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Background!



Science and Discovery!

•  Systematic collection and analysis of observations 

•  Formal statement of theories, laws, and models 

•  Use of theories / models to explain and predict observations 

•  Use of observations to evaluate theories / models 

Science is a diverse collection of activities that is distinguished 
by important characteristics:   

Scientific discovery is widely viewed as one of the highest forms 
of human achievement.  

Computational accounts of such discovery would have important 
implications, both theoretical and practical.  

3 



Most philosophers have avoided scientific discovery, believing it 
immune to logical analysis. Popper (1934) wrote:	  

The initial stage, the act of conceiving or inventing a theory, 
seems to me neither to call for logical analysis nor to be 
susceptible of it … My view may be expressed by saying that 
every discovery contains an ‘irrational element’, or ‘a creative 
intuition’ …  

Hempel and many others also believed discovery was inherently 
irrational and beyond understanding.  

However, advances made by two fields – cognitive psychology 
and artificial intelligence – in the 1950s suggested otherwise.  

Mystical Views of Discovery 
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Scientific Discovery as Problem Solving!

•  Search through a space of problem states 

•  Generated by applying mental operators 

•  Guided by heuristics to make it tractable 

Simon (1966) offered another view – scientific discovery is a 
variety of problem solving that involves:   

Heuristic search had been implicated in many cases of human 
cognition, from proving theorems to playing chess.  

This framework offered not only a path to understand scientific 
discovery, but also ways to automate this mysterious process.  
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Early Progress!

•  Carried out search in a problem space of theoretical terms;  

•  Using operators that combined old terms into new ones;  

•  Guided by heuristics that noted regularities in data; and  

•  Applied these recursively to formulate higher-level relations.  

For my CMU dissertation research, I adapted Simon’s ideas on 
scientific discovery, developing a computer program that:    

The result was Bacon (Langley, 1981), an early AI system that 
rediscovered laws from the history of physics and chemistry.  

I named the system after Sir Francis Bacon because it adopted a 
data-driven approach to discovery.   
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Bacon on the Ideal Gas Law 

Bacon rediscovered the ideal gas law, PV =  aNT + bN, in three 
stages, each at a different level of description.  

PV =  c1 PV =  c2 PV =  c3 PV =  c4 PV =  c5 PV =  c6 PV =  c7 PV =  c8 PV =  c9 

c/N = d1 c/N = d2 c/N = d3 

d = aT + b 

Parameters for laws at one level became dependent variables in 
laws at the next level, enabling discovery of complex relations.  
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Some Laws Discovered by Bacon 

Basic algebraic relations: 
•  Ideal gas law   PV =  aNT + bN 
•  Kepler’s third law   D3 = [(A – k) / t]2 = j 
•  Coulomb’s law   FD2 / Q1Q2 = c 
•  Ohm’s law    TD2 /  (LI – rI) = r 

Relations with intrinsic properties: 
•  Snell’s law of refraction  sin I / sin R  = n1 / n2 
•  Archimedes’ law   C  = V  +  i 
•  Momentum conservation  m1V1 =  m2V2 
•  Black’s specific heat law  c1m1T1 + c2m2T2 = (c1m1+ c2m2 ) Tf  
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Bacon inspired other many AI systems for law discovery like: 

•  ABACUS (Falkenhainer, 1985) and ARC (Moulet, 1992) 
•  Fahrenheit (Zytkow, Zhu, & Hussam, 1990) 
•  COPER (Kokar, 1986) and E* (Schaffer, 1990) 
•  IDS (Nordhausen & Langley, 1990) 
•  Hume (Gordon & Sleeman, 1992) 
•  DST (Murata, Mizutani, & Shimura, 1994) 
•  SSF (Washio et al., 1997) and LaGramge (Todorovski et al., 2006) 
•  GP (Koza et al., 2001) and Eureqa (Schmidt & Lipson, 2009) 

These relied on different methods but also searched for explicit 
mathematical laws that matched data.  

Ensuing Systems for Law Discovery!
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Successes of Computational Scientific Discovery 

AI systems of this type have helped to discover new knowledge 
in many scientific fields:  

•  reaction pathways in catalytic chemistry (Valdes-Perez, 1994, 1997)  
• qualitative chemical factors in mutagenesis (King et al., 1996) 
• quantitative laws of metallic behavior (Sleeman et al., 1997) 
• quantitative conjectures in graph theory (Fajtlowicz et al., 1988) 
• qualitative conjectures in number theory (Colton et al., 2000) 
•  temporal laws of ecological behavior (Todorovski et al., 2000) 
• models of gene-influenced metabolism in yeast (King et al., 2009) 

Each of these has led to publications in the refereed literature of 
the relevant scientific field.   
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• Emphasized the availability of large amounts of data 

• Used computational methods to find regularities in the data 

• Adopted heuristic search through a space of hypotheses  

•  Initially focused on commercial applications and data sets 

During the 1990s, a new research paradigm – known as data 
mining – emerged that: 

Most research adopted notations invented by computer scientists, 
unlike scientific discovery, which used scientific formalisms.  

Data mining has been applied to scientific data, but the results 
seldom bear a resemblance to scientific knowledge. 

The Data Mining Movement 
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Discovering Explanatory Models!



Discovering Explanatory Models 

The early stages of any science focus on descriptive laws that 
summarize empirical regularities.  

Mature sciences instead emphasize the creation of models that 
explain phenomena in terms of:  

• Inferred components and structures of entities 

• Hypothesized processes about entities’ interactions 

Explanatory models move beyond description to provide deeper 
accounts linked to theoretical constructs.   

Can we develop computational systems that address this more 
sophisticated side of scientific discovery?  
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An Example: The Ross Sea Ecosystem 

 
d[phyto,t,1] = - 0.307 × phyto - 0.495 × zoo + 0.411 × phyto 
 
d[zoo,t,1] = - 0.251 × zoo + 0.615 × 0.495 × zoo 
 
d[detritus,t,1] = 0.307 × phyto + 0.251 × zoo + 0.385 × 0.495 × zoo - 0.005 × detritus 
 
d[nitro,t,1] = - 0.098 × 0.411 × phyto + 0.005 × detritus 
 

Formal accounts of ecosystem 
dynamics are often cast as sets of 
differential equations.  

Here four equations describe the 
concentrations of phytoplankton, 
zooplankton, nitrogen, and detritus 
in the Ross Sea over time.  

Such models can match observed 
variables with some accuracy.  
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A Deeper Account of Ross Sea Dynamics!

 
d[phyto,t,1] = - 0.307 × phyto - 0.495 × zoo + 0.411 × phyto 
 
d[zoo,t,1] = - 0.251 × zoo + 0.615 × 0.495 × zoo 
 
d[detritus,t,1] = 0.307 × phyto + 0.251 × zoo + 0.385 × 0.495 × zoo - 0.005 × detritus 
 
d[nitro,t,1] = - 0.098 × 0.411 × phyto + 0.005 × detritus 
 

As phytoplankton uptakes nitrogen, 
its concentration increases and the 
nitrogen decreases. This continues 
until the nitrogen is exhausted, 
which leads to a phytoplankton die 
off. This produces detritus, which 
gradually remineralizes to replenish 
nitrogen. Zooplankton grazes on 
phytoplankton, which slows the 
latter’s increase and also produces 
detritus. 
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Processes in Ross Sea Dynamics!

 
d[phyto,t,1] = - 0.307 × phyto - 0.495 × zoo + 0.411 × phyto 
 
d[zoo,t,1] = - 0.251 × zoo + 0.615 × 0.495 × zoo 
 
d[detritus,t,1] = 0.307 × phyto + 0.251 × zoo + 0.385 × 0.495 × zoo - 0.005 × detritus 
 
d[nitro,t,1] = – 0.098 × 0.411 × phyto + 0.005 × detritus 
 

As phytoplankton uptakes nitrogen, 
its concentration increases and the 
nitrogen decreases. This continues 
until the nitrogen is exhausted, 
which leads to a phytoplankton die 
off. This produces detritus, which 
gradually remineralizes to replenish 
nitrogen. Zooplankton grazes on 
phytoplankton, which slows the 
latter’s increase and also produces 
detritus. 
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Processes in Ross Sea Dynamics!

 
d[phyto,t,1] = - 0.307 × phyto - 0.495 × zoo + 0.411 × phyto 
 
d[zoo,t,1] = - 0.251 × zoo + 0.615 × 0.495 × zoo 
 
d[detritus,t,1] = 0.307 × phyto + 0.251 × zoo + 0.385 × 0.495 × zoo - 0.005 × detritus 
 
d[nitro,t,1] = - 0.098 × 0.411 × phyto + 0.005 × detritus 
 

As phytoplankton uptakes nitrogen, 
its concentration increases and the 
nitrogen decreases. This continues 
until the nitrogen is exhausted, 
which leads to a phytoplankton die 
off. This produces detritus, which 
gradually remineralizes to replenish 
nitrogen. Zooplankton grazes on 
phytoplankton, which slows the 
latter’s increase and also produces 
detritus. 
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A Process Model for the Ross Sea!
model Ross_Sea_Ecosystem 
 

variables: phyto, zoo, nitro, detritus 
observables: phyto, nitro 

 

process phyto_loss(phyto, detritus) 
  equations:  d[phyto,t,1] = -0.307 × phyto 

 d[detritus,t,1] = 0.307 × phyto 
 

process zoo_loss(zoo, detritus) 
  equations:  d[zoo,t,1] = -0.251 × zoo 

 d[detritus,t,1] = 0.251 × zoo 
 

process zoo_phyto_grazing(zoo, phyto, detritus) 
  equations:  d[zoo,t,1] = 0.615 × 0.495 × zoo 

 d[detritus,t,1] = 0.385 × 0.495 × zoo 
 d[phyto,t,1] = -0.495 × zoo 

 

process nitro_uptake(phyto, nitro) 
  equations:  d[phyto,t,1] = 0.411 × phyto 

 d[nitro,t,1] = -0.098 × 0.411 × phyto 
 

process nitro_remineralization(nitro, detritus) 
  equations:  d[nitro,t,1] = 0.005 × detritus 

 d[detritus,t,1 ] = -0.005 × detritus 
 

We can reformulate such an 
account by restating it as a  
quantitative process model.  
 

Such a model is equivalent    
to a standard differential 
equation model, but it makes 
explicit assumptions about   
the processes involved.  

 

Each process indicates that 
certain terms in equations 
must stand or fall together.  
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Inductive Process Modeling 

!!!

Time-series data

Generic processes

Process 
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process 
Modeling

exponential_growth(Organism1)
  rate R = Organism1
  derivatives  d[Organism1,t] = a * R
  parameters a = 0.75

holling(Organism2, Organism1)
  rate R = Organism2 * Organism1
  derivatives   d[Organism2,t] = b * R,
                     d[Organism1,t] = c * R
  parameters  b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
  rate R = X
  derivatives  d[X,t] = a * R
  parameters a > 0

holling(X [predator], Y [prey]) [predation]
  rate R = X * Y
  derivatives   d[X,t] = b * R, d[Y, t] = c * R
  parameters  b > 0, c < 0

Inductive process modeling constructs explanations of time series 
from background knowledge (Langley et al., ICML-2002).  

  

 

 

 

 

 

 
 

Models are stated as sets of differential equations organized into 
higher-level processes.  20 



Some Generic Processes!

process exponential_loss(S, D)  process remineralization(N, D) 
  variables: S{species}, D{detritus}    variables: N{nutrient}, D{detritus} 
  parameters: α [0, 1]    parameters: π [0, 1] 
  equations:  d[S, t, 1] = -1 × α × S    equations: 

 d[D, t, 1] = α × S   d[N, t, 1] = π × D 
   d[D, t, 1] = -1 × π × D 

 

generic process grazing(S1, S2, D)  process constant_inflow(N) 
  variables: S1{species}, S2{species}, D{detritus}    variables: N{nutrient} 
  parameters: ρ [0, 1], γ [0, 1]    parameters: ν [0, 1] 
  equations:  d[S1, t, 1] = γ × ρ × S1    equations:  d[N, t, 1] = ν 

 d[D ,t, 1] = (1 - γ) × ρ × S1 
 d[S2, t, 1] = -1 × ρ × S1 

 

generic process nutrient_uptake(S, N) 
  variables: S{species}, N{nutrient} 
  parameters: τ [0, ∞], β [0, 1], µ [0, 1] 
  conditions:  N > τ 
  equations:  d[S, t, 1] = µ × S  

 d[N, t, 1] = -1 × β × µ × S 

Our aquatic ecosystem library 
contains about 25 generic 
processes, including ones with 
alternative functional forms for 
loss and grazing processes.  

These form the building blocks 
from which to compose models. 
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The SC-IPM System!

1. Uses background knowledge to generate process instances;   
2. Combines them to produce possible model structures, rejecting 

ones that violate known constraints;     
3. For each candidate model structure:  
    a. Carries out gradient descent search through parameter space 

 to find good coefficients;  
 b. Invokes random restarts to decrease chances of local optima;   

4. Returns the parameterized model with lowest squared error or a 
ranked list of models.   

Bridewell and Langley (2010) have reported SC-IPM, a system  
for inductive process modeling that: 

We presented encouraging results with SC-IPM on a variety of 
scientific data sets.  
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Some SC-IPM Successes!

aquatic ecosystems protist dynamics 

hydrology biochemical kinetics 23 



The PROMETHEUS System 

We embedded these ideas in PROMETHEUS, an interactive system for 
process model construction (Bridewell et al., IJHCS, 2007).   
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Extensions to Inductive Process Modeling!

•  Inductive revision of quantitative process models 
•  Asgharbeygi et al. (Ecological Modeling, 2006) 

•  Hierarchical generic processes that constrain search 
•  Todorovski, Bridewell, Shiran, and Langley (AAAI-2005) 

•  An ensemble-like method that mitigates overfitting effects  
•  Bridewell, Bani Asadi, Langley, and Todorovski (ICML-2005) 

•  An EM-like method that estimates missing observations 
•  Bridewell, Langley, Racunas, and Borrett (ECML-2006) 

In addition, we have extended the basic framework to support: 

These extensions made the modeling framework more robust 
along a number of fronts.  
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Recent Progress on Process Modeling!



Critiques of SC-IPM 
Despite these successes, the SC-IPM system suffers from four 
key drawbacks, in that it: 
• Evaluates full model structures, so disallows heuristic search 

• Requires repeated simulation to estimate model parameters 

• Invokes random restarts to reduce chances of local optima 

• Despite these steps, it can still find poorly-fitting models 

As a result, SC-IPM does not scale well to complex modeling 
tasks and it is not reliable.  

In recent research, we have developed a new framework that 
avoids these problems (Langley & Arvay, AAAI-2015).  
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A New Process Formalism 
SC-IPM allowed processes with only algebraic equations, only 
differential equations, and mixtures of them.  

In our new modeling formalism, each process P must include:  
• A rate that denotes P’s speed / activation on a given time step 

• An algebraic equation that describes P’s rate as a parameter- 
free function of known variables 

• One or more derivatives that are proportional to P’s rate 

This notation has important mathematical properties that assist 
model induction.  

The new framework also comes closer to Forbus’ (1984) notion 
of qualitative processes.  
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A Sample Process Model 
Consider a process model for a simple predator-prey ecosystem:  
  exponential_growth[aurelia]!
    rate        r = aurelia!
    parameters  A = 0.75!
    equations   d[aurelia] = A * r!
!

  exponential_loss[nasutum]!
    rate        r = nasutum!
    parameters  B = -0.57!
    equations   d[nasutum] = B * r!
!

  holling_predation[nasutum, aurelia]!
    rate        r = nasutum * aurelia!
    parameters  C = 0.0024!
                D = -0.011!
    equations   d[nasutum] = C * r!
                d[aurelia] = D * r!

Each derivative is proportional to the algebraic rate expression.  
29 



A Sample Process Model 
Consider a process model for a simple predator-prey ecosystem:  
  exponential_growth[aurelia]!
    rate        r = aurelia!
    parameters  A = 0.75!
    equations   d[aurelia] = A * r!
!

  exponential_loss[nasutum]!
    rate        r = nasutum!
    parameters  B = -0.57!
    equations   d[nasutum] = B * r!
!

  holling_predation[nasutum, aurelia]!
    rate        r = nasutum * aurelia!
    parameters  C = 0.0024!
                D = -0.011!
    equations   d[nasutum] = C * r!
                d[aurelia] = D * r!

d[aurelia] = 0.75 * aurelia – 0.011 * nasutum * aurelia!
d[nasutum] = 0.0024 * nasutum * aurelia – 0.57 * nasutum!

This model compiles into a 
set of differential equations 
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Some Generic Processes 
Generic processes have a very similar but more abstract format:  
  exponential_growth(X [prey]) [growth]!
    rate        r = X!
    parameters  A = (> A 0.0)!
    equations   d[prey] = A * r!
!

  exponential_loss(X [predator]) [loss]!
    rate        r = predator!
    parameters  B = (< B 0.0)!
    equations   d[prey] = B * r!
!

  holling_predation(X [predator], Y [prey]) [predation]!
    rate        r = X * Y!
    parameters  C = (> C 0.0)!
                D = (< D 0.0)!
    equations   d[predator] = C * r!
                d[prey] = D * r!

As before, these are building blocks for constructing models. 

.  
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RPM: Regression-Guided Process Modeling 
This suggests a new approach to inducing process models that 
our RPM system implements:  

•  Generate all process instances consistent with type constraints 
•  For each process P, calculate the rate for P on each time step 
•  For each dependent variable X,  

• Estimate dX/dt on each time step with center differencing,  
• For each subset of processes with up to k elements,  

•  Find a regression equation for dX/dt in terms of process rates 
•  If the equation’s r2 is high enough, retain for consideration 

•  Add the equation with the highest r2 to the process model 

This approach factors the model construction task into a number 
of tractable components.  
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Two-Level Heuristic Search in RPM 
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Heuristics for Model Induction 
RPM uses four heuristics to guide its search through the space   
of process models:  
• A model may include only one process instance of each type 

(e.g., only one variant on predation(nasutum, aurelia) ) 
• Parameters must obey numeric constraints that appear in generic 

forms of processes  
• If an equation for one variable includes a process P, then P must 

appear in equations for other variables that P mentions 
• Incorporate variables that participate in more processes earlier 

than less constrained ones 

These heuristics reduce substantially the amount of search that 
RPM carries out during model induction. 
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Behavior on Natural Data 
RPM matches the main trends for a simple predator-prey system.  

 
 

 

 

 

 

 

 
   d[aurelia] = 0.75 * aurelia − 0.11 * nasutum * aurelia [r2 = 0.84]      
   d[naustum] = 0.0024 * nasutum * aurelia − 0.57 * nasutum [r2 = 0.71] 
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Behavior on Complex Synthetic Data 
RPM also finds an accurate model for a 20-organism food chain.  

 
 

 

 

 

 

 

 
 

This suggests the system scales well to difficult modeling tasks.  
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With smoothing, RPM can handle 10% noise on synthetic data.  

 

 

 

 

 

 

 

 

The system also scales well to increasing numbers of generic 
processes and variables in the target model.  

Handling Noise and Complexity 
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We compared RPM to SC-IPM, its predecessor, on synthetic data 
for a three-variable predator-prey ecosystem.  

 

 

 

 

 

 
 

 

 

SC-IPM finds more accurate models with more restarts, but also 
takes longer to find them.  
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SC-IPM 
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We compared RPM to SC-IPM, its predecessor, on synthetic data 
for a three-variable predator-prey ecosystem.  

 

 

 

 

 

 

 
 

RPM found accurate models far more reliably than SC-IPM and, 
at worst, ran 800,000 faster than the earlier system.  
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Some Additional Extensions!



Adapting Models to New Settings 
In some cases, one can adapt an existing model to observations 
rather inducing it from scratch.  

Recent work (Arvay & Langley, ACS-2015) has extended RPM to:  

• Detect anomalies / identify problematic differential equations 

• Reestimate the parameters for these equations 

• If necessary, remove or add processes to equations 

Model adaptation is appropriate when the environment changes 
in some ways but largely remains the same.  

Anomaly 
detection 

Parameter 
revision 

Structure 
revision 
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Effects of Environmental Changes 

Changes in the structure and parameters of a few equations leads to 
substantial changes in all trajectories.  

Initial 
model 

Revised 
model    
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Detecting Anomalous Derivatives 
Plotting predicted derivatives against observed values lets RPM 
identify equations it should revise.  

 

 

 

 

 

 

    
Here d[x4] is well predicted but other derivatives are divergent.  
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Revising a Process Model 
Once RPM has identified equations that make poor predictions,  
it revises them by:  
• Reestimating their parameters using multivariate regression 

• If needed, removing / adding processes from / to each equation 

The system handles each differential equation separately, but 
changes to earlier ones can constrain later revisions.  

Studies with synthetic data 
show that model adaptation 
scales much better than 
induction from scratch.  
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Selective Induction of Process Models 
In even more recent work, we have developed SPM, a system 
that extends RPM further by:  

• Delaying binding of some variables in generic processes until it 
finds evidence of a relationship;  

• Combining sampling of processes with backward elimination to 
induce more complex equations;  

• Finding multiple equations for each dependent variable and then 
searching for ways to combine them into consistent models.  

These extensions give SPM greater coverage, scalability, and 
reliability than its predecessor.  
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Increased Model Coverage 
RPM could not induce some chemical process models because 
processes have the same rate; SPM avoids this problem by:  

• Instantiating initially only variables in a generic process that 
determine  its rate expression;  

• Binding other variables that a process influences only when 
finding equations for their derivatives.  

These extensions let SPM discover chemical reaction networks 
that RPM could not handle.  

46 

Table 2: Differential equations for a chemical system with six
variables that interact through eight distinct reactions. SPM
can reconstruct this model, with minor parameter differences,
from time series that it generates whereas RPM cannot.

dX1/dt = 1.1 ·X2 ·X3� 1.6 ·X1
dX2/dt = 1.8 ·X1� 1.5 ·X2� 1.0 ·X2 ·X3 + 0.9 ·X5 ·X6
dX3/dt = 1.9 ·X1 + 1.1 ·X2� 1.3 ·X3� 1.3 ·X2 ·X3
dX4/dt = 0.9 ·X2 + 0.8 ·X3� 2.5 ·X4 ·X5 + 0.5 ·X5 ·X6
dX5/dt = 0.9 ·X3� 1.8 ·X4 ·X5 + 0.9 · Z
dX6/dt = 2.3 ·X4 ·X5� 0.8 ·X5 ·X6� 0.5 ·X6

Z that keeps other variables from reaching a steady state. An-
other chemical data set involved seven chemicals participat-
ing in 12 reactions, including a time-varying influx.

SPM encountered no difficulty inducing either reaction
network from multivariate trjectories with at least 80 time
steps. In the first case, the system generated 22 process in-
stances from three generic processes, then took 1,000 samples
of six rate terms to identify each component equation. In the
second case, SPM generated 46 processes from four generic
processes, then took 15,000 samples of ten rate terms. Runs
on the first data set required 14.7 ± 0.21 CPU seconds on
average, whereas those for the second took a mean of 111.8
± 0.6 seconds. In contrast, RPM generated 63 process in-
stances from analogous generic structures, and it could not
induce either target model. The reason, as explained earlier,
was that its greedy algorithm combines with eager binding of
variables in processes, leading it to include incorrect process
instances it could not retract during the later stages of model
construction. These runs demonstrate that SPM can induce
chemical process models that its predecessor cannot handle.

4.2 Scalable Induction of Differential Equations
As noted earlier, SPM’s approach to finding individual differ-
ential equations differs substantially from that of its predeces-
sor. RPM carries out exhaustive search for the simplest equa-
tion with an acceptable r

2 score, starting with one-term can-
didates and adding terms until reaching a maximum number.
The new system combines sampling of rate terms (processes)
with backward elimination to identify subsets that are good
predictors of derivatives. This suggests a second hypothesis:

• As the number of terms in a target equation increases, their
induction time for SPM grows more slowly than for RPM.

To test this prediction, we examined the behavior of their
modules for equation induction in isolation. We generated
synthetic data in which derivatives were a linear function of
different numbers – from one to ten – of processes with ran-
dom valued rates. The random data ensured that the terms in
each equation were not highly correlated, thus containing re-
dundant information. We ran each system ten times on each
equation and measured the CPU time needed to find it. We
fixed the number of samples at 10,000 and the number of sam-
pled rate terms at 13 for all SPM runs.

Figure 3 presents the results of this experiment. RPM actu-
ally finds simpler equations more rapidly than SPM, as they
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Figure 3: Average time for RPM and SPM to find target equa-
tions, in CPU seconds, with different numbers of rate terms
(processes).

are consistent with its simplicity bias. However, this changes
for equations with five processes, at which point SPM be-
comes faster. In fact, there were so many combinations of
nine-term equations that RPM could not finish generating
them, making it unable to complete its runs. Growth in CPU
time for SPM was linear, as it depended on the number of
samples and equations specified by the user.

SPM’s sampling approach does not guarantee that it will
find the appropriate equation. The correct set of rates must
appear in the sampled set and feature selection must correctly
identify them as relevant. We can calculate the probability
that the correct combination of rates will appear in a sample
as

�T
S

��T�S
S�R

�
/

�T
R

�
, where T is the total number of processes,

R is the number of rates in the target equation, and S is the
size of the sample. Additional sampling increases the odds of
finding an equation but increases CPU time further, which is a
natural tradeoff. Nevertheless, it seems clear the new system
scales better to equation complexity than its precursor.

4.3 Improved Induction of Consistent Models
Another difference between our approach to process model
induction and its precursor lies in their search for consistent
models. Rather than relying on a greedy method aided by pro-
cess constraints, SPM first finds a set of alternative equations
for each dependent variable and then uses depth-first search
to find all ways to combine them into models. This suggests
a final hypothesis about the two systems:

• SPM induces a more complete set of consistent process
models than RPM and has greater chances of recovering
the target model.

This claim seems straightforward to test, but we have already
seen that RPM’s greedy search is sufficient to find complex
ecological models, and its inability to induce chemical reac-
tion networks is due mainly to eager binding of variables in
processes. However, we can modify SPM’s parameters to ap-
proximate greedy search through the space of process models.

Thus, we ran a parametric study in which we compared the
behavior of the multi-equation SPM with a variant that finds
only one differential equation for each dependent variable.
We ran both versions on the same synthetic data sets used
earlier, some generated from predator-prey models and others



RPM’s exhaustive search for equations becomes intractable if the 
target involves more than five terms.  

 

 

 

 

 
 
 

 

Instead, SPM combines backward elimination of rate terms with 
repeated sampling, giving time linear with equation complexity.  

Better Scaling to Equation Complexity 
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Greater Reliability of Model Induction 
RPM’s greedy search sometimes led it down dead ends; SPM 
avoids this problem by:  
• Finding multiple differential equations for each target variable;  
• Carrying out exhaustive depth-first search for ways to combine 

them into consistent models.  

This strategy increased SPM’s probability of inducing one or 
more models.  
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Table 3. The probability of finding a target model by greedy and multi-equation variants of SPM on ecological
and chemical data sets, along with average CPU time.

Greedy SPM Multi-Equation SPM

Percent CPU Percent CPU

Nas-Aur 100 0.004±.002 100 0.004±.001
Aquatic Ecosyst 100 0.03±.012 100 0.12±.007
Predator Prey 6a 100 0.01±.003 100 0.03±.004
Predator Prey 6b 100 0.83±.004 100 2.63±.008
Predator Prey 20 100 0.81±.028 100 4.10±.100

Chemistry A 0 1.17±2.03 100 14.7±.210
Chemistry B 0 1.65±1.27 100 111.8±.610

Thus, we ran a parametric study in which we compared the behavior of the multi-equation SPM
with a variant that finds only one differential equation for each dependent variable. We ran both
versions on the same synthetic data sets used earlier, some generated from predator-prey models
and others from chemical reaction networks. For each condition, we ran the systems 20 times and
recorded both the total number of consistent models induced, as well as the percentage of times they
found the target model. Table 2 shows that, on the five ecosystem data sets, each variant reliably
found a single model that was equivalent to the target. In contrast, on the two chemical data sets,
the ‘greedy’ version was unable to find the correct model, whereas the full SPM generated several
consistent models, in each case finding the target. Naturally, the full variant took longer to run (14.7
and 111.8 CPU seconds, respectively) than the greedy version (1.17 and 1.65 CPU seconds), but
there is a natural tradeoff between time and coverage. The chemistry B data set was particularly
challenging and needed more time to find consistent models reliably. We should emphasize that all
additional models SPM found were internally consistent in terms of processes and had comparable
r

2 scores. One cannot distinguish them given the data and the system’s background knowledge.

5. Related Research

We have already explained how SPM builds on a long tradition of research on inductive process
modeling. Our system addresses the same basic discovery task as other work in this paradigm, al-
though it takes advantage of ideas introduced by Langley and Arvay (2015) to make the problem
more tractable. We have retained RPM’s assumptions that each process has an associated rate that
is determined by an algebraic expression and derivatives that are proportional to this rate. This idea
comes originally from Forbus’s (1984) Qualitative Process Theory, which used a similar notation for
qualitative models of physical systems. SPM introduces improved mechanisms for inducing quan-
titatve process models, but it benefits from many earlier ideas. The use of background knowledge in
inductive logic programming is similar in spirit but very different in practice, as it acquires models
from relational rather than numeric data and it typically relies on separate-and-conquer methods that
are inappropriate for linked sets of differential equations.
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Concluding Remarks!



Related and Future Research 
Our approach builds on ideas from earlier research, including:  
• Qualitative representations of scientific models (Forbus, 1984) 

• Inducing differential equations (Todorovski, 1995; Bradley, 2001) 

• Heuristic search and multiple linear regression 

• Delayed commitment and feature selection 

Our plans for extending the SPM system include:  
• Handling parametric rate expressions (gradient descent) 

• Dealing with unobserved variables (iterative optimization) 

Together, these should extend SPM’s coverage and usefulness 
even further.   
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Summary Comments!

•  Incorporates a formalism that is familiar to many scientists 

• Utilizes background knowledge about the problem domain 

•  Produces meaningful results from moderate amounts of data  

• Generates models that explain, not just describe, observations 

• Can scale well both to many processes and complex models 

Inductive process modeling is a novel and promising approach 
to discovering scientific models that: 

Although our work has focused on ecological modeling, the key 
ideas extend to chemistry and other domains.  
 

For more information, see http://www.isle.org/process/ . 
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eScience and Discovery Informatics!

•  Creation and simulation of complex explanatory models 
•  E.g., differential equation models for meteorology and biology 
•  However, most such models are constructed manually 

The escience movement champions the use of computers to aid 
the scientific enterprise, emphasizing two themes:    

Science is about the relation between theory and data, and work 
on computational scientific discovery offers a way to join them.  

This idea is central to the new field of discovery informatics.    

•  Collection, storage, and mining of scientific data sets 
•  E.g., learned classifiers in astronomy and planetology 
•  But such analyses make no contact with scientific theory 
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Big Data and Scientific Discovery!

•  Scaling to large and heterogeneous data sets  

•  Scaling to large and complex scientific models 

•  Scaling to large spaces of candidate models 

Digital collection and storage have led to rapid growth of data 
in many areas.  

The big data movement seeks to capitalize on this content, but,  
in science at least, must address three distinct issues:  

Handling large data sets has been widely studied and poses the 
fewest challenges.  

We need far more work on the second two issues, for which the 
methods of computational scientific discovery are well suited.    
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Conclusion 
Scientific discovery does not involve any mystical or irrational 
elements; we can study and even partially automate it.  

Our explanation of this fascinating set of mechanisms relies on:  

•  Carrying out search through a space of laws or models 

•  Utilizing operators for generating structures and parameters 

•  Guiding search by data and by knowledge about the domain 

Systems discover laws and models stated in the formalisms and 
concepts familiar to scientists.  

This paradigm has already started to aid the scientific enterprise, 
and its importance will only grow with time.  
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In Memoriam!

Herbert A. Simon  
(1916 – 2001) 

In 2001, the field of computational scientific discovery lost two of 
its founding fathers.  

Both were interdisciplinary researchers who published in computer 
science, psychology, philosophy, and statistics. 

Herb Simon and Jan Zytkow were excellent role models for us all.   

Jan M. Zytkow 
(1945 – 2001) 



End of Presentation!


