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Abstract

We present the results of an empirical study in
which we evaluated cost-sensitive learning algorithms
on a rooftop detection task, which is one level of pro-
cessing in a building detection system. Specifically, we
investigated how well machine learning methods gen-
eralized to unseen images that differed in location and
in aspect. For the purpose of comparison, we included
in our evaluation a handcrafted linear classifier, which
15 the selection heuristic currently used in the building
detection system. ROC analysis showed that, when
generalizing to unseen images that differed in location
and aspect, a naive Bayesian classifier outperformed
nearest neighbor and the handcrafted solution.

1 Introduction

Vision systems often use handcrafted knowledge to
select visual constructs for further processing, config-
ure visual operators, or choose which visual operators
to apply to an image based on context. Once deployed,
these systems may have to cope with unforeseen cir-
cumstances or variation due to factors such as the time
of day or camera position. This suggests a natural
task for machine learning: automatically acquire req-
uisite heuristic knowledge, letting generalization and
adaptation yield more robust behavior.

We have been investigating this notion using a vari-
ety of machine learning techniques and an existing hi-
erarchical vision system that detects buildings in over-
head imagery. This system, which we will describe
later, uses handcrafted heuristics to select the most
promising visual constructs for further processing. In
general, such heuristics do not always work well be-
cause they are static and do not adapt once deployed

in a vision system, and because humans can consider
only a small number of images and evidential features
when developing them. As a result, we, and other
researchers, have begun to investigate visual learning
approaches in the hope that automated learning tech-
niques will let us survey more images, evaluate and
combine more evidence, and compensate on-line for
inevitable gaps in training, since learning need not
stop: Indeed, it should continue throughout the life
of the vision system.

Our goal is to design a methodology for develop-
ing, selecting, and using machine learning techniques
for combining evidence and improving the behavior
of a hierarchical vision system. However, to achieve
this goal, we must confront several research issues, in-
cluding how well various methods perform on a given
recognition task, how well different classifiers general-
ize to unseen images, and how different imaging con-
ditions affect performance.

In this paper, we take steps toward our goal by
using machine learning techniques to acquire criteria
for selecting rooftop candidates for further process-
ing in the Building Detection and Description Sys-
tem (Bupps) [1]. Using data derived from six over-
head images that differed in location and in aspect,
we conducted a series of experiments to determine how
well different learning methods performed over a range
of misclassification costs and how well the knowledge
learned by each generalized to unseen images that dif-
fered in location and in aspect. ROC (Receiver Oper-
ating Characteristic) analysis [2] indicated that naive
Bayes outperformed both nearest neighbor and the
handcrafted linear classifier currently used in BupDS.



Figure 1: Images of the same location taken from dif-
ferent aspects: nadir and oblique.

2 Building Detection

Rather than construct a new vision system, we
chose to incorporate learning into a mature, robust
vision system that constructs 3-D wire-frame repre-
sentations of rectangular buildings detected in single,
overhead, monocular images [1]. BUDDS is a hierarchi-
cal system that works in a bottom-up manner, start-
ing at the pixel level, where it extracts edgels. It then
selects linear features, which it subsequently groups
into corners and then into “U-constructs.” From
these, BUDDs forms parallelograms that correspond
to rooftops. Using the most promising candidates,
BuDDS constructs buildings by matching the rooftops
with walls, a process supported by shadow evidence.

A complete technical description of BUDDS is not
possible here, but there are two key points to note.
First, we chose to begin our study with rooftops be-
cause, at this step, BuDDS must often handle many
spurious candidates. Second, at each level of pro-
cessing, BUDDS generates a set of constructs (e.g.,
rooftops) and then uses heuristics to select the most
promising for further processing, meaning that once
BubpDS removes a candidate from consideration, it
cannot retrieve it. We will return to implications of
this for learning after describing the rooftop data.

3 Description of the Image Data

We derived the data for this study from six over-
head images of Fort Hood, Texas, collected as part
of the RADIUS program [8]. These images were of
three regions taken from two different aspects: nadir
and oblique. Since we wanted to understand how well
learning methods generalized over location and aspect,
we selected images that varied relatively little in terms
of other factors that affect learning and recognition,
such as occlusion and haze. We then used BUDDS to
extract rooftop candidates from each image. Figure 1
shows two thumbnail images of a building taken from
nadir and oblique aspects.

Table 1: Image and data set characteristics.

Image Positive Negative
Number Location Aspect Examples Examples
1 1 Nadir 197 982
2 1 Oblique 238 1955
3 2 Nadir 71 2645
4 2 Oblique 74 3349
5 3 Nadir 87 3722
6 3 Oblique 114 4395

BuDDS uses nine continuous attributes to repre-
sent each rooftop candidate, which summarize evi-
dence gathered from this and lower levels of process-
ing. Positive evidence for the existence of a rooftop
includes the strength of edges and corners, the degree
to which opposing lines of the candidate are parallel,
and support for the existence of orthogonal trihedral
vertices and shadows near the corners of the candi-
date. Negative evidence includes the degree to which
the bounding lines fail to form a well-shaped parallel-
ogram, the existence of lines that cross the candidate,
L-junctions or T-junctions adjacent to the candidate,
and gaps in the edges of the candidate.

Before we could use any of the machine learning
methods to acquire the selection criteria for rooftops,
we had to label each extracted candidate as either a
positive or negative example of this concept. To ac-
complish this task easily, we implemented a visualiza-
tion system using Java that draws each rooftop can-
didate over the image from which it was extracted,
letting the user click either a “Rooftop” or “Non-
Rooftop” button to label the candidate. It required
about 5 hours to label the 17,829 candidates extracted
by the vision system, of which 718 were labeled posi-
tive and 17,048 were labeled negative. We are investi-
gating additional methods to further reduce the bur-
den of labeling large amounts of training data. Table 1
presents characteristics of the images and the data sets
generated for each.

4 Error Costs and ROC Analysis

An important facet of our study is that we eval-
uated the methods over a range of misclassification
costs. Because BUDDS cannot retrieve discarded
rooftop candidates, it is better to keep a false positive
than to remove a false negative it removes false pos-
itives at later stages of processing where it can draw
upon more accumulated evidence. As a result, mis-
takes on the positive class are more expensive than
ones on the negative class. This is complicated by the
fact that we have a data set that is highly skewed to-



ward the negative class, which effectively biases learn-
ing algorithms toward this class and away from the
positive class, the more important of the two. To com-
pensate for these factors, we modified the methods to
take into account the cost of classification error.

In a previous study [3], we evaluated several learn-
ing methods for the rooftop detection task without
taking into account the cost of errors and found that
naive Bayes and nearest neighbor showed promise of
providing the best tradeoff between the true positive
and false positive rates. We continued our experimen-
tation with these two methods but modified them to
operate under the influence of a cost heuristic that
biases each method toward one of the classes, as de-
scribed in detail elsewhere [4]. This cost heuristic ef-
fectively changes the decision boundary at which a
classifier predicts one class versus the other.

Naive Bayes (e.g., [5]) forms probabilistic concept
descriptions from training data by estimating the prior
probability of each class and the conditional proba-
bility of each attribute value given the class. When
classifying an instance, this method predicts the class
with the highest posterior probability, as computed by
Bayes’ rule. To incorporate a cost heuristic into naive
Bayes, we defined an error cost for each class on the
range [0.0,1.0], where numbers close to one indicate a
high cost of making a mistake. We computed the ex-
pected cost of a decision as a function of the error cost
and the posterior probability, which is minimized for
large values of the error cost and the posterior. The
cost-sensitive version of naive Bayes predicts the class
with the least expected cost.

Nearest neighbor (e.g., [6]) stores each training case
in memory. To classify an instance, the method pre-
dicts the class of the case in memory that is “nearest”
to the instance. For our studies, we used the Euclidean
distance function to measure the distance between the
query and each example in memory. To incorporate
costs into nearest neighbor, we again modified the per-
formance element and computed the expected cost as
a function of the error cost and the distance from the
query to the closest instances from each class, which is
minimized for large values of the error cost and small
values of the distance. Cost-sensitive nearest neighbor
also predicts the class with the least expected cost.

We made similar modifications to the handcrafted
linear classifier, the method currently used in BubpDS.
When classifying an instance, a linear classifier pre-
dicts the positive class if the weighted sum of the at-
tribute values of the instance surpasses a threshold;
otherwise, it predicts the negative class (e.g., [7]). For
this method, we used the cost heuristic to move the
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Figure 2: An idealized ROC curve.

hyperplane of discrimination farther from the hypo-
thetical cluster of examples for the more expensive
class, thus enlarging the decision region for that class.
The cost-sensitive linear classifier predicts the posi-
tive class if the weighted sum surpasses the adjusted
threshold; otherwise, it predicts the negative class. We
included this method for the purpose of comparison
and will refer to it as the BupDS classifier.

Although we knew that detecting rooftops was
more important than rejecting non-rooftops, we did
not know the exact costs involved. Fortunately, ROC
analysis [2] provides a way to evaluate the performance
of cost-sensitive methods over a range of costs. An
ROC curve plots the false positive and true positive
rates for a variety of costs for a given method, as shown
in Figure 2. Performance is perfect at the point (0, 1),
since the false positive rate is zero and the true positive
rate is one. Therefore, we want curves that “push” to-
ward this corner. Traditional ROC analysis uses area
under the curve as the measure of performance, which
we approximated by summing the areas of the trape-
zoids produced by each pair of adjacent points on the
ROC curve.

5 Experimental Results

When designing our experiments, we wanted to in-
vestigate two issues. First, we wanted to know which
method performed the best when generalizing over
location and aspect, expecting that machine-learned
classifiers would outperform the BUDDS classifier.

Second, we wanted to investigate the degree to
which each method was able to generalize to unseen
images that differed in location and in aspect. We
anticipated that the behavior of the learning methods
would degrade when generalizing to these unseen im-
ages, which we demonstrate by comparing to a base-
line performance condition.
5.1 Aspect Experiment

In the first experiment, we controlled for differences
in location to test how well the methods generalized
to unseen images of different aspects. To perform the
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Figure 3: ROC curves for the aspect experiment in which we trained on images from one aspect and tested on
images from the other aspect. Left: trained on oblique, tested on nadir. Right: trained on nadir, tested on
oblique.
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Figure 4: ROC curves for the location experiment in which we trained and tested on images from the same aspect
but different locations. Left: trained and tested on nadir. Right: trained and tested on oblique.

Table 2: Approximate areas under the ROC curves with 95% confidence intervals from the location and aspect
experiments. The ‘Nadir’ and ‘Oblique’ labels indicate the testing images for each condition.

Aspect Experiment Location Experiment
Classifier Nadir Oblique Nadir Oblique
Naive Bayes 0.878+0.042 0.842+0.063 0.901+0.079 0.83140.067

Bubpbs Classifier 0.837£0.085 0.831+£0.068 0.837£0.085 0.831+0.068
Nearest Neighbor 0.795£0.035 0.785£0.053 0.819£0.058 0.697+0.027

Table 3: Approximate areas under the ROC curves and 95% confidence intervals for the baseline performance
condition (i.e., controlling for both aspect and location).

Classifier Nadir Oblique
Naive Bayes 0.900£0.012  0.851£0.022
Nearest Neighbor 0.851£0.019 0.791£0.020




experiment, we selected an image from a given aspect
and location, constructed classifiers,! and tested the
resulting concept descriptions over a range of misclas-
sification costs on the image of the same location but
from the other aspect. For example, referring to Ta-
ble 1, we would select image 1 for training and image 2
for testing. We repeated this procedure for each loca-
tion and both aspects, plotting the average true posi-
tive and false positive rates for the methods as ROC
curves, which are shown in Figure 3. The approximate
areas under these curves appear in Table 2.

When generalizing over aspect for both conditions
(i.e., testing on nadir images and testing on oblique
images), naive Bayes performed the best, yielding
ROC curves with areas of 0.878 and 0.842, respec-
tively. The BubDDS classifier produced curves with ar-
eas of 0.837 for the nadir condition and 0.831 for the
oblique. Finally, nearest neighbor yielded curves of
area 0.795 and 0.785 when testing on the nadir and
oblique images, respectively.

5.2 Location Experiment

For the second experiment, we controlled for differ-
ences in aspect and investigated how well the meth-
ods generalized to images of different locations. We
selected a pair of images from a given aspect, trained
each method over a range of costs, and then tested
the resulting concept descriptions on the third image
of the same aspect but a different location. As an ex-
ample, for the nadir aspect, we trained on images 1
and 3 and tested on image 5. We did this for all pairs
of images for each aspect, plotting the average results
as ROC curves, as shown in Figure 4. Approximate
areas for this experiment also appear in Table 2.

When generalizing over location, naive Bayes out-
performed the other methods when testing on nadir
images, but tied with the BUuDDS classifier when test-
ing on the oblique images. For the nadir aspect, naive
Bayes yielded an ROC curve with an area of 0.901,
while the BuDDS classifier and nearest neighbor pro-
duced curves of area 0.837 and 0.819, respectively. For
the oblique aspect, naive Bayes and the BUDDS classi-
fier yielded curves of area 0.831, with nearest neighbor
producing a curve of 0.697.

5.3 Baseline Performance Condition

To determine the degree to which generalization oc-
curred, we must establish a baseline performance. This
will help us understand how well each method per-
forms on the rooftop detection task when differences
in aspect or location are not factors.

To this end, we split the data from each of the six
images into training (60%) and testing sets (40%), and

We simply applied the BubDs classifier to the test set.

ran each method over a range of misclassification costs.
After ten runs for each image, we computed the aver-
age area under the ROC curves for the runs involving
the nadir images and for the oblique images, which we
present in Table 3.

5.4 Analysis

We first sought to determine the best performing
method when generalizing over aspect and over lo-
cation, anticipating that the learned classifiers would
outperform the BuDDS classifier. Although nearest
neighbor consistently performed worse than the hand-
crafted linear classifier, naive Bayes outperformed the
BuUDDSs classifier in three of the experimental condi-
tions and tied it in the fourth. Hence, we view these
results as positive and generally supportive of our first
research hypothesis.

We were also interested in the degree to which each
method was able to generalize to unseen images that
differed in location and in aspect. Recall that we pre-
dicted that the performance of the learning methods
would degrade when generalizing to unseen images dif-
fering in aspect and location.

To perform this analysis, we compared each
method’s performance from the generalization experi-
ments to those from the baseline condition. If we com-
pare the baseline performances of the methods (see Ta-
ble 3) with the results from the aspect experiment (see
Table 2), we see that the performance of naive Bayes
and nearest neighbor decreases for both the nadir and
oblique conditions.

Conducting the same analysis for the location ex-
periment, we see a similar situation: compared to the
baseline condition, the performance of the methods
decreased when generalizing over location. The ex-
ception is naive Bayes, which performed equally well
on the location experiment and the nadir images of
the baseline condition. Although we want the per-
formance of the learning methods to degrade as little
as possible, we predict that further experimentation
with additional images will produce such a degrada-
tion. Even with this exception, we view these results
as supportive of our second research hypothesis.

It is important to note that generalizing to oblique
images appears to pose a more difficult problem than
generalizing to nadir images, since the areas under the
curves for the oblique conditions are less than those
for the nadir conditions. However, notice that the
baseline performances for the oblique condition were
also less than those for the nadir condition. We sus-
pect that oblique imagery simply poses a more diffi-
cult problem than nadir imagery. Additionally, since
BubpDs was originally developed using nadir images



and later extended to oblique images, the features
may not represent oblique rooftops as well as nadir
rooftops, which could contribute to this effect.

6 Related Work

Much of the work in visual learning relates to ours
but does so along different dimensions. For example,
Beymer and Poggio [9] take an image-based approach
that entails presenting images, usually after a filter-
ing step, directly to a neural network that learns a
mapping from images to classes (e.g., faces or ges-
tures). This contrasts our framework, since BuDDS
forms explicit 3-D representations of objects. Con-
nell and Brady [10] used learning to generalize 3-D
object models of commercial aircraft extracted from
overhead images, but they did not apply learning to
intermediate steps of processing or present a rigorous
experimental evaluation.

Draper et al. [11] tested a cost-sensitive decision-
tree algorithm on an image labeling task using eye-
level images of roads, but they did not evaluate their
method over a range of costs. Other researchers (e.g.,
[12, 13]) have also evaluated a variety of cost-sensitive
learning algorithms but did not use visual tasks or
ROC analysis. Draper’s [14] recent work complements
ours: we assume that a human specifies the visual pro-
cessing steps required to recognize an object, while
his approach learns the sequence of operators neces-
sary to perform recognition. Finally, several vision
researchers have used ROC analysis to evaluate differ-
ent neural network configurations for face detection
[16], as well as ensembles of classifiers for detecting
abnormal tissue in mammograms [17] and Venusian
volcanos in synthetic aperture radar imagery [15].

7 Conclusion

In this paper, we have examined how two learning
methods generalize to unseen images that differ in lo-
cation and in aspect on the task of rooftop detection.
Experimental results demonstrated that, over a range
of costs, naive Bayes outperformed nearest neighbor
and a handcrafted linear classifier, using area under an
ROC curve as the performance metric. We anticipate
that our approach will prove beneficial to other levels
of scene analysis within BUDDS. In the future, we plan
to investigate this notion by applying our approach
to higher (e.g., at the building description level) and
lower levels of processing, and we anticipate that we
will see similar gains in performance over handcrafted
solutions. Our ultimate goal is to incorporate learning
into all levels of processing so, when deployed, BUDDS
can improve its performance and adapt to novel and
unforeseen circumstances with user supervision.
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