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Learning to Sense Selectively in Physical DomainsPat Langley�(Langley@cs.stanford.edu)Robotics Laboratory, Computer Science Dept.Stanford University, Stanford, CA 94305AbstractIn this paper we describe an approach to represent-ing, using, and improving sensory skills for physicaldomains. We present Icarus, an architecture that rep-resents control knowledge in terms of durative statesand sequences of such states. The system operates incycles, activating a state that matches the environmen-tal situation and letting that state control behavior un-til its conditions fail or until �nding another matchingstate with higher priority. Information about the prob-ability that conditions will remain satis�ed minimizesdemands on sensing, as does knowledge about the dura-tions of states and their likely successors. Three statis-tical learning methods let the system gradually reducesensory load as it gains experience in a domain. Wereport experimental evaluations of this ability on threesimulated physical tasks: ying an aircraft, steering atruck, and balancing a pole. Our experiments includelesion studies that identify the reduction in sensing dueto each of the learning mechanisms and others that ex-amine the e�ect of domain characteristics.IntroductionAutonomous physical agents interact with the environ-ment through sensors and e�ectors, and AI researchon physical control has focused on taking the properactions under the right perceptual conditions. Mostwork on execution and sensing employs a closed-loopapproach that samples all available sensors on everytime step. However, such work typically assumes thatthere is no cost to sensing and that the agent has un-limited perceptual resources.�Author's new address: Intelligent Systems Laboratory,Daimler-Benz Research and Technology Center, 1510 PageMill Road, Palo Alto, CA 94304.Permission to make digital/hard copies of all or part of thismaterial for personal or classroom use is granted withoutfee provided that the copies are not made or distributedfor pro�t or commercial advantage, the copyright notice,the title of the publication and its date appear, and noticeis given that copyright is by permission of the ACM, Inc.To copy otherwise, to republish, to post on servers or toredistribute to lists, requires speci�c permission and/or fee.Agents '97 Marina del Rey CA USA (c) 1997 ACM

Clearly this assumption does not hold for humansin many domains. Information overload is a commondi�culty in tasks like ying an aircraft, and we believeAI systems will encounter similar problems on tasksof equivalent complexity. We hold that the standardclosed-loop scheme makes sense only in domains wherethe results of sensor tests are unpredictable and wherethe sensing process is cheap. Given an environmentwhere test results change infrequently or where sensingis expensive, a strategy that senses only occasionally isboth possible and desirable.In this paper, we describe Icarus, an architecturefor physical agents that addresses the issue of selectivesensing. Rather than sampling sensors on each timestep, the system checks them only if this seems likelyto provide useful information. As in other areas of en-deavor, intelligent sensing must rely on knowledge ofthe domain. This in turn suggests a role for learning,since we would prefer to avoid the task of encoding suchknowledge manually. Instead, we would like Icarusagents to acquire their strategies for selective sensingfrom experience with domains in which they operate.In the following sections, we present the architectureand illustrate its behavior in a simple sensori-motor do-main. First we consider Icarus' representation of con-trol knowledge, then turn to the ways that it uses thatknowledge to operate in the environment. After this,we examine the architecture's learning mechanisms andthe manner in which they alter performance with expe-rience. Next we present experimental evidence of thesystem's learning ability in three simulated domains,and examine the components and domain characteris-tics responsible for the improvement. In closing, wereview Icarus' relation to other work on agent archi-tectures and suggest some directions for future research.Representation of Control KnowledgeBefore we can describe the mechanisms that underlieIcarus' performance and learning, we must �rst ex-plain the knowledge structures on which these processesoperate. The basic structure in long-term memory isthe state, which describes a duration of time duringwhich certain characteristics of the environment hold.This idea corresponds closely to the notion of a quali-



Learning to Sense Selectively 2tative state in research on qualitative physics (Forbus,1985; Kuipers, 1985), though here the characteristicsmay be either qualitative or quantitative in nature.Each state includes a name and a set of arguments thatdenote objects in the state, a set of activation conditionsthat must hold for the state to apply, and the expectedduration of the state. Optionally, the state may alsospecify a set of actions, a set of e�ects these actionshave on the state, and a set of successor states that arelikely to follow the current one. The last feature alsogives the avor of a �nite-state machine.Consider a simple control task that involves balanc-ing a pole hinged to a cart that moves only horizon-tally. Our formulation assumes three sensory variables:the pole's angle and angular velocity, in the activationconditions, and the pole's angular acceleration, in thee�ects �eld. This particular system does not sense thecart's position or velocity, though naturally these vari-ables inuence the simulation. Two actions are possible{ pushing the cart to the left and pushing it to the rightwith the same force setting.Figure 1 depicts graphically six states from this do-main. One of these states, named push-right-when-falling, describes situations in which the pole is lean-ing to the right and falling downward in that direction.The single action for this state is push-right, whichapplies a force to the right, and the expected resultis an increase in the pole's angular velocity. Anotherstate, push-right-when-rising, has the same actionand expected e�ects, but the angular velocity is nega-tive, indicating that the pole is leaning to the right butrising rather than falling.Icarus states also associate numbers with each de-scriptive literal. For activation conditions, these indi-cate the probability that the literal will continue to besatis�ed on any given time step once the state is ac-tive. For the e�ects �eld, the numbers likewise showthe probability that, if the actions are carried out whilethe state is active, they will have the speci�ed e�ects.The numbers associated with each successor indicatethe probability that the speci�ed state will be activefollowing the current one. A �nal �eld speci�es themean and standard deviation for the state duration.1The �gure also shows some successor relations forthis domain. The state push-right-when-falling istypically followed by either push-right-when-risingor no-push-when-fallen-right, which has no suc-cessors. Similarly, push-right-when-rising is suc-ceeded by the state push-left-when-falling, whichin turn comes before either push-left-when-risingor no-push-when-fallen-left, another terminatingstate. Finally, state push-left-when-rising precedespush-right-when-falling, closing the control loop.1The architecture's inclusion of state durations consti-tutes an important di�erence from the framework of Markovdecision processes, which models duration by letting statesbe their own successors. Icarus neither allows self tran-sitions nor requires them, since it models state durationsdirectly.

Icarus' state representation has much in commonwith Strips operators (Fikes, Hart, & Nilsson, 1971)in that they specify application conditions, actions, ande�ects; they also bear a close kinship to production rules(e.g., Anderson, 1983; Langley, 1987). However, recallthat, in our framework, both actions and e�ects are op-tional. When the e�ects are absent, Icarus states aremore similar to the entries in the state-action tablesused in reinforcement learning. When actions are ab-sent, they have more in common with the states usedin qualitative physics. The inclusion of informationabout successors is consistent with the latter's notion ofenvisionment, but it diverges from standard operator,production-rule, or state-action representations, noneof which store sequential knowledge.In addition to its long-term state memory, Icarusalso includes a perceptual short-term memory that con-tains information about the attributes of objects in theperceptual �eld. For the pole-balancing domain, this iswhere the system retains information about angle, ve-locity, and acceleration. We assume that this memoryis updated only when the architecture invokes a sensorfor a particular object; otherwise the contents remainunchanged from time step to time step.Finally, a goal memory stores information about therelative desirability of certain states. This memory con-tains elements that specify state names and their in-stantiated arguments, along with their desirability onthe current time step, which corresponds roughly tothe state-action tables used in reinforcement learningto specify expected rewards. We store this informationapart from states themselves because di�erent ordersare appropriate for di�erent tasks (e.g., balancing thepole vs. making it fall over to the left), thus givingthe architecture more exibility. Moreover, di�erentinstantiations of a state may have di�erent priorities.The current architecture requires the programmer toprovide these priorities, though future versions shouldbe able to learn this ordering.Sensing and Execution in IcarusNow that we have examined Icarus' representation ofknowledge, we can turn to its use of that knowledge.The basic process operates in cycles, as in architecturesfor both production systems and reactive agents. Oneach cycle, the system senses the environment, deter-mines which states match the current situation, selectsone of these matched states, and executes its associatedactions. However, once Icarus has activated a state S,it continues to keep S active until its activation condi-tions or expected e�ects become false, or until it �ndsa successor state that matches and that has a higherpriority than S. This constitutes an important di�er-ence from most other architectures, which reconsider allpossibilities on each cycle.Another essential di�erence is that sensing, althoughclosely intertwined with execution, does not occur bydefault. On most cycles, Icarus checks at most onlythose sensors that relate to conditions in the currently
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Figure 1: Six states for the pole-balancing domain that di�er in the direction in which the pole leans, in the directionthe pole is moving (light arrow), and in the direction of the applied force (dark arrow).active state or those in its immediate successors. Nordoes the system check the activation conditions of suc-cessor states on every time step. Instead, it carries outthe sensing necessary for this process only when knowl-edge about the state's duration suggests that succes-sors are likely to match. In particular, it assumes thatthe state duration obeys a normal distribution (an un-likely but convenient model) and uses the stored meanand standard deviation to compute the probability thatsuccessors are satis�ed. When this quantity exceeds asystem parameter (set to 0.84 in our studies), Icarusinvokes the sensors needed to test the conditions on thecurrent state's successors.Another strategy for reducing sensor load goes intoe�ect once the system has activated a new state. Re-call that each activation condition C has an associatedprobability SC of being satis�ed once the state has be-come active. Icarus assumes that each time step con-stitutes an independent coin toss, letting it compute theprobability FC;T that the condition will still be satis�edafter T steps as SCT . The architecture carries out thesensing needed to test a condition C only when FC;Tdrops below another global parameter (set to 0.5 in ourruns). The system uses the same strategy for checkingexpected e�ects. For cycles on which a sensor is notcalled, Icarus assumes the value in short-term mem-ory, which comes from the most recent invocation, issu�ciently accurate.For example, the state push-right-when-fallingcontains four activation conditions. Two literals simplyposit that the pole has an associated angle and angularvelocity; thus, they have an associated probability ofone. The two other literals state that the angle andvelocity are greater than zero. These have an estimatedprobability of 0.4, so that if the parameter is 0.5, they

would produce sensing on every cycle.2 In contrast,if a condition had an estimated probability of 0.8, itwould produce sensing only on every fourth cycle, since0:84 < 0:5 < 0:83. Thus, Icarus senses no more thannecessary to be reasonably sure that the conditions ande�ects of the current state are still satis�ed.In some cases, the architecture �nds that either theactivation conditions or the expected e�ects of the stateS are not matched on the current time step, and that noknown successor states are satis�ed. In this situation,the system does apply its sensors exhaustively to allobjects in the environment in an attempt to �nd an ap-propriate state. (Icarus uses the same scheme on the�rst cycle, since it has no expectations to guide it.) Ifone or more states match, the system selects the statewith the highest goal priority score and makes it ac-tive; these scores also resolve conicts among di�erentinstantiations of the same state. However, in our ex-perience the system seldom encounters such situations,provided it has states that accurately describe the do-main. To date, we have tested the system only usingnoise-free sensors, but we anticipate that averaging sen-sor values across a number of cycles will produce similarbehavior even when noise is present.To summarize, Icarus' behavior on each cycle in-volves carrying out the actions associated with the cur-rently active state and, if the probability is low thatthe state's activation conditions or e�ects are still sat-is�ed, invoking the associated sensors. If these liter-als no longer hold, or if the state's expected durationhas been exceeded, the architecture examines the likely2Because a literal like (> ?a 0) requires that the vari-able ?a be bound, a decision to sense it can lead instead tosensing another literal like (angle ?pole ?a), even whenthe latter is guaranteed to be satis�ed.



Learning to Sense Selectively 4successors for another state to activate. These strate-gies should reduce the system's sensing costs in domainswith predictable tests and states of long duration, butthey rely on accurate information about conditions, du-rations, and successors. Let us now consider the originof these statistics.Sensory Learning in IcarusThere exist many places within the Icarus architec-ture where learning might occur. However, our cur-rent work assumes that the basic control states andpriorities are already in place, and that learning oc-curs within this context. This approach follows a longtradition, widespread within the machine learning com-munity, that relies on background knowledge to con-strain the learning process. Rather than attempting toacquire control knowledge, we have focused on threeforms of statistical learning aimed at reducing the de-mand for sensing. These processes, which we describebelow, learn about which states follow others, durationsof states, and reliability of state conditions.Learning about Successor StatesEarlier we saw that states can include informationabout which states may succeed them, along with theprobability of each option. This knowledge determinesthe states that Icarus checks to see if their activationconditions hold, and thus indirectly inuences decisionsabout sensing. Although the programmer can providethe system with information about likely successors, itcan also revise this information with experience.This learning process operates in a straightforwardmanner. Each state S retains a count C for every suc-cessor that has occurred immediately following S, alongwith the total number of times T that S has been ac-tive. Icarus updates these counts each time a statestops being active and its successor has been identi�ed.From these counts, the system estimates the probabilityfor each state's successor asC + CIT + TI ;where CI and TI are initial counts that correspond to aprior probability for each state-successor pair given atthe outset.By convention, we typically provide Icarus with noinformation about the successors of each state. Thus,for each state S it assumes initially that every state (ex-cept S itself, since self transitions cannot occur) mayfollow with equal probability, leading it to check theactivation conditions for each one. As it gains expe-rience in a given domain, the system obtains reliablestatistics about the sequence of states that tend to oc-cur in practice. Icarus ignores successors for whichthe estimated probability is below a certain threshold(set to 0.05 in the runs described later). As a result,for domains in which some successors are unlikely, suchlearning can reduce sensing costs, in that fewer succes-sor states (and thus fewer activation conditions) must

be checked. However, for domains in which successorsare less predictable, the system will continue to checkall candidates.Learning about State DurationsWe have also noted that states include informationabout their duration, and that the architecture uses thisin determining when to consider possible successors.Icarus uses another simple updating scheme for thisstate parameter, retaining the total number of timesthe state has been active, the sum of its durations, andthe sum of squares. Together, these let the system de-termine the mean and standard deviation of the stateduration from experience.Again, the e�ect of this learning depends on the do-main. By default, we set each state's prior mean to 1.0and its standard deviation to 0.1, which causes Icarusto check likely successor states on every time step. Ifthe state's actual mean duration is low or its standarddeviation is high, the system will continue this strategyregardless of the amount of experience with that state.In contrast, if the mean duration is high and the devia-tion low, then learning will gradually lead the agent tomake ever longer delays before checking the successorstates, thus reducing the number of activation condi-tions checked and decreasing the sensing load; this pro-cess will continue until the estimated mean approachesthe actual one.Learning about State ConditionsWe have also mentioned that, during execution of anactive state, Icarus uses the probability of success as-sociated with each activation condition to determinehow often to sense that condition, and that it uses asimilar scheme for expected e�ects. Although the pro-grammer speci�es the initial probabilities for each con-dition, a third learning process revises these estimatesin the light of experience.In support of this activity, Icarus retains two countsfor each condition and e�ect in a state: the number oftimes K it has been sensed during execution and thenumber of times H it has held when sensed. Everytime the system carries out the sensing needed to test aliteral, it increments K, but it increments H only if theliteral is satis�ed. As with successors, Icarus is alsogiven a prior probability in terms of initial counts KIand HI . From these numbers it computesH +HIK +KI ;the estimated probability that a condition will remainsatis�ed on a time step if that test was satis�ed on theprevious one.By convention, we set the sensing threshold to 0.5and initialize the probabilities for each condition ande�ect to 0.4, which guarantees Icarus will sense themon each time step, as this should produce the most rapidlearning. For a literal that is seldom satis�ed, the as-sociated probability will remain low and sensing will



Learning to Sense Selectively 5continue to be frequent. However, for literals that tendto remain satis�ed for many time steps, the probabilitywill increase and the system will gradually sense it lessand less often.Experiments with Sensory LearningAlthough the intuitions behind our approach to sen-sory learning seem reasonable, we would prefer strongerevidence that Icarus' mechanisms lead to improvedperformance in practice. To this end, we constructedknowledge bases for three simulated control problemsand carried out a number of experiments to evaluatethe system's behavior. In this section we describe thesedomains, our experimental design, and our �ndings.Three Simulated Control DomainsWe selected three domains for our study that varied intheir characteristics, in an attempt to ensure general-ity in our results. We have already described the pole-balancing task, which has been widely used in studies ofreinforcement learning (e.g., Anderson, 1989; Selfridge,Sutton, & Barto, 1985). Our formulation of this do-main uses only three sensory variables and one controlvariable, which exerts force to the left or right. Theknowledge base we encoded for the task incorporatesthe six states shown in Figure 1, which are su�cient tobalance the pole inde�nitely before any sensory learningoccurs. On each run, the pole starts with zero angularvelocity and a randomly selected angle between �0:1and 0:1 radians.Our second task involves backing up a truck, com-posed of a cab and trailer, to a dock while moving atconstant speed. Anderson and Miller (1991) describethe di�erential equations for this domain, whereasNguyen and Widrow (1989) report an approach tolearning control knowledge in this context. Andersonand Miller's formulation assumes four sensory variables{ two coordinates for the back of the trailer and theangles for the trailer and cab. We have altered thisslightly, using the cab's angle with respect to the trailerand adding a sensor variable for the wheel angle. Thesingle control variable lets the agent increment or decre-ment the angle of the cab's wheels. Our control pro-gram for this domain incorporates 11 distinct states.On each run, the truck starts with the trailer between10 and 30 degrees, with the cab angle between 5 and�5 degrees, and with the x coordinate between 50 and70 meters from the dock, all sampled randomly fromthe uniform distribution.The third control problem involves ying a simulatedairplane through a three-dimensional slalom course; theplane must traverse a sequence of rectangular gates thatoccur at di�erent angles and elevations from the plane'sstarting position in mid-air. The simulator supportssensors for the roll and pitch of the aircraft, its alti-tude, and a variety of other variables, including �rstderivatives of many measures. The agent also has infor-mation about the position of each gate, G, with respect

to the plane, in terms of the apparent horizontal anglesto the left and right sides of G, the vertical angles to thetop and bottom of G, and the distance to G. For thetwo-gate courses used in our experiments, this gives atotal of 14 sensors. Controls include the ability to repo-sition the control stick forward and sideways.3 Thisslalom task may appear straightforward to the reader,but Goettl (1993) has found that most human subjectstake hours to become pro�cient enough to go throughall the gates without error. Our knowledge base for thistask contains some nine durative states.Basic Learning ResultsOur main hypothesis was that the learning mechanismsdescribed above can lead to a reduction in sensory loadwith little increase in error, and our �rst experimentwas designed to test this prediction. Our main de-pendent measures were the probability of invoking eachsensor on a given time step, augmented by the domain-speci�c measures of error discussed below. The primaryindependent variable, apart from the domain, was thenumber of training or practice runs the agent had car-ried out. Our aim was to generate learning curves thatplotted sensory load as a function of experience. Herewe assume that matching contributes little cost oncethe sensing process is complete, so that reduction insensor load corresponds to potential increase in speed;this view contrasts with most work on `speedup' learn-ing (e.g., Minton, 1990), which emphasizes reduction inmatching and search costs.For each domain, we provided Icarus with the con-trol states mentioned earlier and ran the system a num-ber of times. To maximize sensing at the outset, weinitialized each knowledge base with 0.4 probabilitiesfor sensor conditions, with mean durations of 1.0 anddeviations of 0.1, and with uniform probabilities for suc-cessor states. We turned all learning o� for the �rst runto establish a baseline, then alternated between prac-tice runs with learning and test runs without, the latterto obtain measures of performance for a given experi-ence level.4 For each domain, we repeated this process20 times and combined the results to obtain an averagelearning curve.Figure 2 (a) shows the average results, with 95% con-�dence intervals, for three sensors on the pole-balancingtask, using 100 cycles for both practice and test runs.Icarus initially calls the sensors for pole angle and an-gular velocity on nearly every time step, but after tenpractice runs, this has dropped to less than a two-thirdsprobability. The reduction for the angular accelerationis even more signi�cant; its initial probability of being3This task is distinct from the ight-control domain re-ported by Sammut, Hurst, Kedzier, and Michie (1992),which includes takeo�, traversal of a speci�ed path, andlanding on the runway.4Because the tasks themselves can require alternationamong states and sensors, this approach seemed more ap-propriate than tracking online learning, as typically donewith reinforcement methods.
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Figure 2: Learning curves for the pole-balancing domain: (a) the probability of invoking three sensors; and (b) errormeasured as the absolute angle of the pole from vertical. The results are averaged over 20 runs; the error barsrepresent 95% con�dence intervals.called is 0.8, but after two runs it has dropped to 0.2,having been reduced by a factor of four. Our measureof error here was the pole's average angular distance, inradians, from the upright position, which ranges fromzero to �1:571 (when the pole has fallen); Figure 2 (b)shows that this error appears una�ected by the reduc-tion in sensing. Moreover, additional test runs of 1000cycles after the tenth practice trial showed that the sys-tem could balance the pole reliably for this period.We observed very similar behavior (not shown here)in the truck-steering domain, with both practice andtest runs lasting 90 cycles, for the wheel-angle, trailer-angle, and cab-angle sensors. On this task, each sensorwas initially invoked on nearly every time step, but theprobabilities for the trailer angle and cab angle droppedmore rapidly than the wheel angle, which appeared tobe less predictable. For this domain, we de�ned error asthe �nal angle of the trailer, after the truck has reachedthe dock. As before, sensory learning did not seem toincrease this performance measure; behavior was moreerratic than for pole balancing but the angular errorremained small (around three degrees). The importantpoint is that, qualitatively, the system had no troublealigning the trailer with either full or selective sensing.Again, the learning curves for the ight-control do-main (based on 70-cycle practice and test runs) reveala similar picture. Here the sensors associated with theplane typically have a higher probability of invocationthan those concerning gates, because the system focuseson the nearest gate, but in all cases the sensing proba-bility generally decreases with experience. Figure 3 (a)shows the results for the plane's pitch and roll, as wellas the left angle of the �rst gate. Other sensors havedi�erent slopes and intercepts but follow the same pat-tern. The measure of error here is the distance fromthe gate's center as the plane passes through the gate's

x coordinate. Figure 3 (b) indicates this quantity re-mains una�ected with increased practice and reducedsensing; more important, the system continues to suc-cessfully thread gates throughout the learning process.Sources of PowerThe above experiments gave evidence that Icarus'learning processes can reduce sensory load without se-rious increase in errors, but it did not identify whichmechanisms were responsible for the shift. Reason-ing suggests that revising condition probabilities willhave no e�ect without increases in expected duration,and that altering durations will not change behaviorunless successor checking becomes selective. To testthis hypothesis, we ran a `lesion' study in which we ex-cised some processes but retained others. We examinedthree experimental conditions: one in which all learn-ing mechanisms were active, one in which only successorand duration learning operated, and one in which onlysuccessor learning occurred. Thus, our main indepen-dent variable besides experience level was the type oflearning that took place, while our dependent measurewas again the probability of sensing.Figure 4 (a) gives the learning curves for angular ve-locity in the pole-balancing domain under these threesituations. They indicate that all three learning pro-cesses must operate for reduction in sensing to occuron this task. We found similar results for the truck-steering domain, though here the combination of suc-cessor and duration learning gives minor improvement(not shown) on some sensor variables. However, thesituation was very di�erent for the ight-control task.As Figure 4 (b) shows for the roll sensor, learning onlyabout likely successors still provides some improvement,revising the expected duration leads to additional re-duction, and altering condition probabilities gives fur-
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Figure 3: Learning curves for the ight-control domain: (a) the probability of invoking three sensors; and (b) errormeasured as distance from the gate center as the plane passes that gate's x coordinate.ther bene�t. We can explain this behavior in terms ofthis domain's states, which tend to employ di�erent sen-sors; in the absence of condition learning, delayed andselective checking of successors should reduce sensingunder such circumstances. In contrast, they should nothelp in domains for which states typically contain thesame sensors, such as pole balancing and truck steering.E�ect of Domain CharacteristicsAs Kinny, George�, and Hendler (1992) have shown,the optimal sensing rate varies with a domain's charac-teristics. For tasks in which the environment changesslowly and the e�ects of actions are predictable, infre-quent sensing is su�cient to produce e�ective behav-ior; but for rapidly changing or unpredictable domains,more frequent sensing is needed. Our �nal experimentswere designed to show that Icarus' learning mecha-nisms responded appropriately to such characteristics,so that they reduce sensing only to the level proper forthe domain.To this end, we systematically varied two aspects ofthe pole-balancing task, the simplest of our three do-mains. For one comparison, we altered the simulatorparameter (tau) that speci�es the length of each timestep, giving conditions under which the simulator ran atdi�erent rates than in our previous studies. In anothercomparison, we modi�ed the simulator to insert ran-domly a force twice the amount exerted by the agent,in a randomly selected direction. We intended this tomimic a malicious observer attempting to upset the bal-ancing act. Here we varied the probability of force in-sertion to inuence domain uncertainty.The results of the �rst study appear in Figure 5 (a),which shows that when tau is higher than the default(0.005), the system continues to sense frequently (withnearly 0.9 probability), as it realizes the need for moreupdates to keep the pole balanced in the rapidly chang-

ing world. In contrast, when tau is low, Icarus sensesless often (with only 0.4 probability) than in the defaultsituation. The experimental results for unpredictableenvironments also agree with our expectations. Fig-ure 5 (b) shows that increasing the probability of anexternal force raises the asymptotic sensing rate, whichis appropriate given that the presence of outside inu-ence requires more monitoring to avoid disaster.In both the more rapid and the less predictable vari-ants of the task, Icarus retained the ability to balancethe pole, though naturally the average error was higherfor the more di�cult tasks, even with full sensing. Insummary, our statistical learning mechanisms tend toacquire sensing rates that are appropriate for the taskat hand, e�ectively taking into account the speed anduncertainty of the domain.Related Work on Learning and ControlIcarus holds many features in common with previousapproaches to building intelligent agents, but it alsodi�ers from them in important ways. One commonframework for modeling intelligent behavior is known asa production system. Like Icarus, such architecturescontain both short-term and long-term memories, withthe latter consisting of condition-action rules. A pro-duction system also operates in cycles, on each roundmatching rules' conditions against the literals in short-term memory, selecting a rule for application, and usingthat rule's action side to determine behavior. Ander-son's (1983) ACT and Laird and Rosenbloom's (1990)Soar are two well-known production-system architec-tures that include learning components, and much ofthe work on learning search heuristics (e.g., Langley,1987; Minton, 1990) assumes a similar framework.However, most research in this paradigm has focusedon planning and problem solving rather than sensingand execution. The contents of short-term memory,
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Figure 4: The e�ect of lesioning learning mechanisms for condition satisfaction and state duration on (a) the angular-velocity sensor in the pole-balancing domain and (b) the roll sensor in the ight-control domain. (The curves forsuccessor only and successor/duration in (a) are identical.)against which rules match, contain inferences ratherthan sensory information, and rules' actions gener-ate such inferences rather than alter the environment.Learning typically involves changing the conditions onrules, composing multiple rules, or changing their rela-tive priorities. Although this work emphasizes speedingup processing, it focuses on reducing search and match-ing costs during problem solving rather than reducingsensing costs during execution.In contrast, research on reactive behavior directly ad-dresses issues of sensing and execution. The standardreactive system operates in cycles, much like a produc-tion system. However, rather than matching againstliterals in short-term memory, it matches against per-ceptions of the environment, and rather than alteringthe contents of short-term memory, its actions a�ectthe environment. Work on reinforcement learning (e.g.,Watkins, 1989; Kaelbling, 1993) incorporates the samebasic control scheme, but also stores priorities withstate-action pairs for use in selecting actions. Such sys-tems typically invoke all sensors on each cycle, makingdecisions locally with no notion of planning or projec-tion. Within this paradigm, our work comes nearest tothat by Grefenstette, Ramsey, and Schultz (1990), inthat our states closely resemble their control rules.Icarus approximates a reactive system when itsstate descriptions contain probabilities that force sens-ing on every cycle. However, it di�ers from them inthat, having entered a state S, it keeps S active untilits conditions no longer hold, or until a successor linkdirects its attention to an active successor state. More-over, the system invokes only those sensors associatedwith the state during this period. The architecture'suse of state priorities to select among successor statesshares some features with strategies used in reinforce-ment learning, but its selective sensing strategies are

quite di�erent from the exhaustive approach to sensingcommonly assumed in that framework.Nilsson's (1994) approach to reactive behavior, whichhe calls teleoreactive systems , has the greatest similarityto our own. His scheme incorporates rules that matchagainst sensory information, that execute actions whichalter the environment, and that are durative in nature.The main di�erences are that Nilsson's framework as-sumes sensors should be checked on each cycle, and thatit includes no statistical information about conditions,durations, or successor states to support selective sens-ing. Nevertheless, the two architectures share manybasic assumptions and techniques, and Nilsson's workhas inuenced our stance on the integration of percep-tion, action, and cognition. Benson (1995) describes anextension that learns models of states' conditions ande�ects, but that does not alter the sensing strategy.Our approach to reactive control bears a strong re-semblance as well to DeJong's (1994) work, which alsouses qualitative states to represent knowledge about do-mains with continuous variables. DeJong's main con-cern lies with improving the accuracy of state descrip-tions over time, rather than with learning to sense se-lectively, and he stores no explicit information aboutsuccession among states. However, the qualitative rep-resentation of control knowledge and the general spiritof the work are much the same.A few AI researchers have explored the idea of se-lective sensing, motivated by the realization that mon-itoring often incurs some cost. Chrisman and Simmons(1991) describe an approach to static sensing policiesthat, although selective, must be determined at devel-opment time. Another line of work is represented byAbramson (1991), Kinny, George�, and Hendler (1992),and Langley, Iba, and Shrager (1994); each presents aformal model of plan execution that predicts the opti-



Learning to Sense Selectively 9

0 2 4 6 8 10

Number of practice runs

(a)
0.

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y 

of
 s

en
si

ng

tau = 0.0025

tau = 0.005

tau = 0.02

0 2 4 6 8 10

Number of practice runs

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1

P
ro

ba
bi

lit
y 

of
 s

en
si

ng

P(force) = 0.4

P(force) = 0.2

P(force) = 0.0

Figure 5: The e�ect on sensing probability for the angular-velocity sensor in the pole-balancing domain (a) whenthe rate of change is altered from the default (tau = 0:005) and (b) when there exists an outside force that a�ectsthe cart with some probability.mal sensing rate under di�erent levels of sensor cost anddomain uncertainty. Their various models di�er some-what but share the assumption that a single sensing rateholds across the entire execution process. Tan (1991)reports work on the induction of sensing strategies, buthis goal was to determine an e�cient sequence of sensorcalls, rather than to learn when sensing is necessary.Icarus' association of separate statistics with eachstate has more in common with the framework ofHansen (1994), which represents the environment asa Markov model in which di�erent sensing rates areoptimal for di�erent states. However, our method fordetermining when to sense relies on local state in-formation, whereas his more sophisticated dynamic-programming scheme involves some search. Relatedwork by Hansen and Cohen (1993) adapts ideas fromreinforcement learning to determine sensing rates foreach state from experience; again, their motivation issimilar to our own but the details di�er.Concluding RemarksIn the previous sections we described Icarus, an archi-tecture designed to control physical agents in domainswhere sensing resources are limited. We found that thesystem represents control knowledge in terms of dura-tive states that borrow features from research in bothplanning and qualitative physics. We saw that Icaruscan behave in purely reactive mode, but that it canalso take advantage of knowledge about the probabil-ity of sensory conditions being unchanged, the dura-tion of states, and likely successors. We also describedthree statistical learning mechanisms that can acquirethis knowledge from experience, and we reported exper-imental evidence that they reduce sensing load withoutseriously increasing error.

Despite the progress we have made in developing andtesting the architecture, clearly more work remains. Infuture research, we plan to further evaluate Icarus'performance and learning abilities in new control do-mains, as additional evidence of the system's generality.Obvious candidates include the problems reported byGrefenstette et al. (1990) and by Anderson and Miller(1991), for which simulators and results with other sys-tems are available.We also need to better motivate the architecture'sbias toward sensing as seldom as possible. Humans ap-pear to have severe limits on the number of environ-mental features that can occupy their attention, whichpresumably drives their need to sense selectively. Fu-ture versions of Icarus should include a limit on thenumber of features that can be inspected on each cycle,so that there is a clear function for the selective sens-ing made possible by learning. Under these conditions,frequent sensing could actually prohibit the agent fromtaking actions needed to handle the task, so that re-duction in sensory load may reduce errors. Attachingdistinct costs to sensors also opens the way to decision-theoretic methods for selecting the best sensors to sam-ple on each time step.Another research direction involves introduction ofadditional learning mechanisms, which are currentlylimited to altering the probability estimates on condi-tions, durations, and successors. Given our architec-ture's similarity to the teleoreactive systems of Nils-son (1994) and Benson (1995), it seems natural to bor-row their approach to inducing action models for use inlearning state descriptions from experience. Moreover,the system's use of priorities on states suggests that weshould take advantage of techniques from reinforcementlearning to alter those weights dynamically. Finally, we
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