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Abstract
In this paper, I review approaches for acquiring hierarchical
knowledge to improve the effectiveness of planning systems.
First I note some benefits of such hierarchical content and the
advantages of learning over manual construction. After this,
I consider alternative paradigms for encoding and acquiring
plan expertise before turning to hierarchical task networks.
I specify the inputs to HTN learners and three subproblems
they must address: identifying hierarchical structure, unify-
ing method heads, and finding method conditions. Finally, I
pose seven challenges the community should pursue so that
techniques for learning HTNs can reach their full potential.

Background and Motivation
Early applications of AI revolved around expert systems,
which produced many successes but also relied on man-
ual elicitation and entry of domain knowledge (Waterman,
1986). This made them expensive to develop, difficult to
maintain, and subject to errors. The field of machine learn-
ing, launched in 1980, aimed to automate creation of such
knowledge bases. This movement also had many successes,
initially with supervised learning from tabular data for clas-
sification (Langley and Simon, 1995) but recently with other
types of content for vision, language, and game playing.

One area that has seen comparatively slow progress on
learning has been planning. Although early examples ap-
peared in the literature (e.g., Fikes et al., 1972; Minton,
1988), the automated acquisition of expertise has never be-
come a central focus of planning research. One reason may
be that mainstream planning methods rely on little domain
knowledge and, despite the combinatorial character of many
tasks, there has been steady progress toward techniques that
scale to complex problems. This has led many researchers to
conclude that learning is unnecessary for effective planning.

Nevertheless, there is clear evidence, both theoretical and
empirical, that domain knowledge can offer substantial re-
duction in search and time required to find solutions. This
holds especially for HTNs – hierarchical task networks (Nau
et al., 2003) – and related formalisms, which specify ways
to decompose complex planning problems into subproblems
and thus eliminate many unproductive candidates from con-
sideration. The challenge here is the same as that confronted
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by the expert system community: extracting and encoding
this knowledge is a tedious, expensive, and error-prone pro-
cess. This in turn suggests that acquiring HTNs automati-
cally, rather than constructing them by hand, would offer the
same advantages as learning in other AI areas.

In the following sections, I review the benefits of hier-
archical organization and alternative ways to acquire plan
knowledge. After this, I concentrate on HTN learning, ex-
amining the inputs to this task and identifying three primary
subproblems that it must address, in each case citing relevant
work. Finally, I present seven additional hurdles that the re-
search community must overcome before techniques for the
automated acquisition of HTNs can offer the same advan-
tages that machine learning has provided in other settings.

Benefits of Hierarchical Decomposition
We all have experience decomposing complex problems into
subproblems, as people organize everyday activities in this
manner. For example, a common morning routine involves
getting out of bed, taking a shower, and getting dressed, but
each of these is broken down further into substeps. Taking
a shower in turn requires entering the bathroom, starting the
water, getting into the shower, washing with soap, and so
forth. This decomposition continues until it reaches prim-
itives that handle low-level movements. Our repertoires of
routine activities are organized into rich hierarchies of such
skills, each of them aimed at achieving a specific goal but
also having considerable generality. People store this knowl-
edge in long-term memory and retrieve relevant structures as
needed to achieve their current objectives.

The benefits of activity decomposition are even greater
when one encounters novel problems that require search
to solve. Recall that, in the worst case, a problem space
with branching factor b and depth d includes bd alterna-
tive paths, which rapidly becomes intractable for complex
tasks with long solutions. Decomposing such a task into sub-
problems reduces the exponent b and dividing subtasks into
still smaller ones can give further savings. Breaking down a
problem recursively can lower its computational complexity
substantially. A classic example involves logistics planning,
which requires selecting materials to transport and allocat-
ing vehicles for moving them to target destinations. Such
problems have regular structures that suggest efficient ways
to partition them into sets of simpler subtasks.



However, such savings only materialize if one chooses
useful problem organizations. Uninformed search through
a space of decompositions can actually increase complex-
ity over search in the original ‘flat’ space. This means that
specifying appropriate problem decompositions, including
the conditions under which to select them, is essential for
their effectiveness. And although we can specify such hier-
archical breakdowns manually, this approach can take con-
siderable effort and introduce errors. Thus, the greatest po-
tential lies in acquiring these structures from experience, as
in other applications of machine learning.

We should also discuss the performance element that uses
hierarchical plan knowledge. Most work on HTNs accesses
this content for plan generation, invoking it in a top-down
manner to find action sequences that achieve specified goals.
But one can use the same structures for knowledge-guided
reactive control and even for monitoring progress of exe-
cuted plans. Finally, one can draw on them for plan recog-
nition and understanding, which involves inferring another
agent’s plans or goals from observed behavior. The hierar-
chical organization of knowledge has benefits in each set-
ting, as the resulting plans have interpretable steps and de-
scribe activity at multiple levels of abstraction. The plan
knowledge itself is also understandable, being closely akin
to computer programs’ procedures and subroutines.

Varieties of Learning Plan Expertise
Before we can discuss approaches to learning plan knowl-
edge, we must first specify the generic problem, which we
can express in terms of inputs and outputs:

• Given: Knowledge of relations that describe states / goals
• Given: Knowledge about conditional effects of actions
• Given: Sample traces of problem solutions / failures
• Find: Knowledge that constrains / guides search for plans

Like other branches of machine learning, we can divide re-
search into paradigms that differ in how they encode exper-
tise (Langley, 1996), with implications for how planners use
such content to make search more effective. These include:

• Acquiring search-control knowledge. This paradigm rep-
resents learned expertise as a set of rules for selecting, re-
jecting, or preferring states, goals, or operators. Planners
use these structures as heuristics to guide their search for
solutions and reduce the effective branching factor. The
literature has explored two primary approaches to learn-
ing rules for search control. One involves induction over
solution paths, treating decisions that produced them as
positive training cases and decisions that would have di-
verged as negative ones (e.g., Sleeman et al., 1982). An-
other relies on logical analysis of solution paths and fail-
ures, compiling their steps into conditions under which
similar decisions will and will not lead to problem solu-
tions (e.g., Mitchell et al., 1986; Minton, 1988).

• Forming macro-operators. This framework encodes plan
knowledge as sequences of actions or operators, along
with their effects under specified conditions. These struc-
tures let planners take larger steps through a given prob-

lem space, which in turn reduces the effective depth of
their search. Learning involves composing the conditions
and effects for action sequences to produce new opera-
tors that describe the conditional results of the sequences
(e.g., Fikes et al., 1972; Iba, 1989). Advanced variants
can learn disjunctive, iterative, and even recursive macro-
operators that are similar in spirit to HTNs (e.g., Shell and
Carbonell, 1989; Shavlik, 1990).

• Learning hierarchical task networks. This paradigm, our
central concern here, represents planning expertise as a
set of hierarchical methods, each specifying a task, a set
of subtasks, and its conditions for application. A close
relative, hierarchical goal networks, indexes methods by
goals they achieve rather than arbitrary task names. Typ-
ical HTN planners accept an initial state and a task or
set of goals, then apply methods recursively to decom-
pose the problem until it grounds out in primitive actions.
This process involves search, but usually far less than re-
quired in the absence of hierarchical knowledge. At first
glance, HTN learning appears similar to forming macro-
operators, but the need to find conditions on methods has
produced both inductive responses (e.g., Ilghami et al.,
2005) and analytical ones (e.g., Hogg et al., 2008).

A fourth paradigm, which encodes expertise in a very differ-
ent format, instead relies on numeric evaluation functions.
This typically carries out heuristic search without explicit
goals, using the function to select among successor states.
Induction can take different forms, but a common variety
is reinforcement learning, which often propagates state val-
ues backward over sequences of actions that have produced
more or less desirable outcomes. This comes closest to tech-
niques for learning search-control rules, although the two
paradigms encode content in quite different ways.

I will limit consideration here to techniques for learning
plan knowledge from sample solutions, but I should note two
other frameworks that operate over different types of input.
One is interactive task learning, in which a human instructs
an agent, using a mixture of natural language and exam-
ples, how to break down complex procedures into simpler
ones (e.g., Kirk and Laird, 2014). Another is learning from
written instructions, such as those found in manuals, which
involves reading textual descriptions and extracting inter-
pretable procedures (Langley et al., 2024). Both paradigms
show considerable promise for acquiring hierarchical plan
knowledge, but I lack space to cover them in this paper.

Forms of Input for HTN Learning
Above I reviewed different paradigms for acquiring plan ex-
pertise, but mainly to provide context for our focus – learn-
ing hierarchical task networks – to which I now turn. As
noted earlier, this task requires three types of input: domain
predicates that are used to represent states and goals; domain
operators that serve as elements of plans; and sample plans
that serve as training problems to drive learning.

The first two items are the same as for classic knowledge-
lean planners (e.g., as encoded in PDDL) and require no fur-
ther elaboration. However, the solutions for training prob-
lems can vary along three dimensions that merit discussion:



• Source of sample solutions. These may be generated by
the planner itself, typically using knowledge-lean heuris-
tic search on simple training problems (e.g., Choi and
Langley, 2005; Li et al., 2009; Langley, 2023). Alterna-
tively, the solutions may be provided by a human trainer
who understands the domain and its problems (e.g., Il-
ghami et al., 2005; Nejati et al., 2006; Hogg et al., 2008).
This difference is not as important as it first appears be-
cause systems that rely on self-generated solutions can
pass them on to the same types of mechanisms that learn
from externally provided solutions.

• Structure of sample solutions. These may involve a sim-
ple sequence of operator instances that transform the ini-
tial state into one that satisfies the goal description (e.g.,
Nejati et al., 2006).1 Another option is for the human
trainer to organize each sample solution into a hierarchy
that decomposes the problem into subproblems (e.g., Il-
ghami et al., 2005; Hogg et al., 2008). This dimension
interacts with the first one, as it requires extra effort from
the human who provides sample solutions, but it can be
generated automatically by some knowledge-lean plan-
ning methods (e.g., Li et al., 2009).

• Presentation of sample solutions. The learner may en-
counter solutions in an online manner and process them
incrementally (e.g., Ilghami et al., 2005; Nejati et al.,
2006; Hogg et al., 2008). Alternatively, the system may
receive a set of training solutions en masse, which it then
can process in batch mode (e.g., Li et al., 2014; Grand
et al., 2022). The first option has been more common,
partially because research in the area has often been in-
spired by the incremental nature of human learning, but
both are legitimate approaches to HTN acquisition.

Choices along these dimensions serve as design decisions
that set the stage for learning. We will see that they lend
themselves to different approaches to the task of acquiring
hierarchical task networks from training solutions.

Three Elements of HTN Learning
An important step in addressing any complex task is to iden-
tify its constituent processes. We can decompose the prob-
lem of HTN learning into three subtasks that are naturally
addressed in a logical sequence:

• Identifying hierarchical structures. The first step in con-
structing HTN methods is extracting the hierarchical
structure of solutions for given training problems. Al-
though some approaches assume this is provided (e.g.,
Hogg et al., 2008), it must often be found automatically.
For instance, systems that generate their own solutions
using backward chaining from goals produce a hierarchi-
cal decomposition for each problem (e.g., Choi and Lan-
gley, 2005; Langley, 2023). However, even learners that
are given sample solutions can analyze goal dependen-
cies (e.g., Nejati et al., 2006; Li et al., 2009) or landmarks
(Fine-Morris et al., 2020) to generate hierarchies. A very
different approach applies grammar-induction techniques
1A rarely used alternative is a sequence of state descriptions,

from which one can infer responsible operators with action models.

to solution sequences to find recurring hierarchical struc-
tures (e.g., Li et al., 2014; Grand et al., 2022). Analytical
approaches typically operate incrementally, whereas ones
that invoke grammar induction rely on batch processing.

• Unifying heads of methods. The second step involves de-
termining when two or more HTN methods should have
same task name or head, which is essential for domains
that benefit from disjunctive or recursive knowledge.
Some approaches provide task names as part of hierar-
chical problem solutions (e.g., Ilghami et al., 2005; Hogg
et al., 2008), but in other cases the learner must make
this decision itself. One response is to unify and merge
the heads of methods that achieve the same goal, which
can be extracted from solutions generated by backward
chaining (e.g., Langley and Choi, 2006; Langley, 2023)
or from analysis of trainer-provided solutions (e.g., Nejati
et al., 2006). In contrast, batch learners that use grammar-
induction techniques to identify hierarchical structure can
unify the heads of methods that appear in similar contexts
(e.g., Li et al., 2014; Grand et al., 2022).

• Finding method conditions. The final step is finding con-
ditions on methods that determine when the planning sys-
tem should apply their associated decompositions. Some
researchers have used analytical or explanation-based
techniques (e.g., Hogg et al., 2008) for this purpose; these
compile elements from the solution sequence into condi-
tions that ensure the same results. This approach learns
from individual cases, but it can generate idiosyncratic
conditions that are unnecessarily specific. Others have re-
lied on inductive techniques, ranging from the candidate
elimination algorithm (Ilghami et al., 2005) to inductive
logic programming (Reddy and Tadepalli, 1997; Cropper
and Muggleton, 2015), which compare positive and neg-
ative instances. These find more general conditions, but
they are either limited to conjunctive conditions or re-
quire more training data. Identifying conditions on meth-
ods is the most challenging facet of HTN learning and the
one that remains its weakest link.

Despite the differences among approaches, they share the
idea that learning plan knowledge involves the creation of
new hierarchical structures. We have seen that the three con-
stituent tasks can be tackled analytically, by reasoning over
relations among plan steps, or statistically, by finding regu-
larities in sample solutions. The first approach typically pro-
cesses training cases incrementally, while the second usu-
ally operates in batch mode. To date, there have been no ex-
perimental comparisons of the alternatives, but such studies
would be a valuable addition to the literature.

Challenges for HTN Learning
Despite two decades of research on the issues above, tech-
niques for acquiring HTNs from sample solutions have not
yet replaced their manual construction. This may be due
partly to advances in knowledge-lean planning that do not
rely on hierarchical content, but another reason is that HTN
learning has not delivered on its promise. In this section,
I consider seven challenges that the community should ad-
dress to achieve its original vision. These include:



• Improving condition finding. Existing mechanisms for
identifying conditions on methods do well given enough
training data, but their learning rate is slower than hu-
mans, who master a new skill from only a few exam-
ples. Both analytical and inductive schemes fall short
on this front, so we should explore alternatives. Langley
(2023) reports a third option – noting mutually exclusive
relations that occur before and after successful decom-
positions – that let it propose conditions based on sin-
gle cases. However, there may exist other techniques that
produce rapid, human-like learning of HTN conditions.

• Acquiring binding constraints. Although learned HTNs
can greatly reduce the search for solutions, they suffer
from the same limitation as macro-operators: an inability
to distinguish desirable bindings from undesirable ones.
For instance, a recursive method for building a tower can
specify that one should stack A on B and stack B on C,
but not the order of these two actions. A promising re-
sponse is to extend the representation of methods to spec-
ify goals they achieve and to analyze sample solutions for
interactions among them. Detecting interactions would
introduce ordering constraints on methods, an idea re-
lated to work on partial-order planning but only recently
applied to learning plan knowledge (Langley, 2023).

• Integration with action learning. Most approaches to ac-
quiring HTNs depend on having correct action models,
but this poses issues for complex domains, as specify-
ing such descriptions manually can be time consuming
and error prone. To automate HTN acquisition more fully,
we should integrate techniques reviewed earlier with ones
that learn action models from observation and experimen-
tation, as in early work by Gil (1994) and Benson (1995).
A straightforward scheme would apply the two processes
in sequence, but the research community should also ex-
plore approaches that interleave them, including refine-
ment of incomplete and incorrect action models.

• Learning from partial solutions. Approaches to HTN ac-
quisition generally posit that sample solutions are com-
plete and correct but, if provided by humans, this assump-
tion may not hold. Thus, we also need research on how
to acquire useful methods even when training cases have
missing or extra actions, as well as when states have omit-
ted or incorrect relations. Zhuo et al. (2009) and Grand
et al. (2022) describe responses to a number of these is-
sues, which they treat as intertwined with the previous
challenge of learning and refining action models.

• Forming conceptual predicates. Mechanisms for learning
HTNs offer a powerful way to find useful temporal ab-
stractions, but they still rely on manual handcrafting of
knowledge for state abstractions. We should also develop
approaches that automate this latter process by introduc-
ing new relational predicates that describe regularities in
states. As with learning action models, this could occur
prior to HTN acquisition or be interleaved with it, al-
though the second option would be desirable for extended
operation. There has been some preliminary work along
these lines (e.g., Li et al., 2012; Cropper and Muggleton,
2015), but we need more efforts on this topic.

• Cumulative acquisition of methods. Most work on HTN
learning has focused on domains of moderate complex-
ity that can be mastered rapidly. However, acquiring hier-
archical plan knowledge in complex domains poses new
challenges. E.g., a reconnaissance agent that operates on
extended missions must address many goals and store
methods to achieve them. Such scenarios will require on-
line learning not only over long periods, but also cumu-
lative learning in which later knowledge elements build
on those acquired earlier. HTNs offer a natural response,
in that the agent can recode its experiences in terms of
high-level tasks and apply learning to create new meth-
ods stated in these abstract terms.

• Evaluating candidate methods. Sometimes learning can
reduce search but actually increase planning time, a sit-
uation Minton (1988) has called the utility problem. The
literature on HTN learning has never noted instances of
this issue, but it seems likely to arise in complex domains
that require acquisition of many methods. Thus, we need
research on detecting the utility problem, say by keeping
statistics for each method, and responding appropriately,
say by removing ones whose costs outweigh their ben-
efits. Another response would be to associate expected
values with methods and use reinforcement learning to
update them, with planners using these estimates to rank
decompositions during search. Both Hogg et al. (2010)
and Patra et al. (2020) report progress along these lines.

Taken together, advances in these areas would augment the
abilities of HTN-learning systems and decrease reliance on
human assistance. This in turn should improve their learn-
ing rates and asymptotic performance, letting them reduce
or eliminate search on problems of substantial complexity.

Concluding Remarks
In this paper, I reviewed the problem of learning expertise to
guide planning, a topic that has not received the attention it
deserves. The analysis focused on acquiring knowledge for
decomposing complex tasks into simpler ones, with HTNs
as the classic target, and I contrasted this problem with other
formulations of acquiring plan expertise – learning search-
control rules and forming macro-operators – that encode
knowledge in different ways. I also identified the inputs to
HTN learning and three issues it must handle – extracting
the network’s hierarchical structure, unifying heads of dif-
ferent methods, and finding conditions on their application.

In addition, I raised seven key challenges that future work
on HTN learning should address. These included improved
finding of conditions, acquiring constraints on bindings, in-
tegrated learning of methods and action models, construct-
ing methods from partial solutions, inventing new predicates
that describe states in abstract terms, cumulative acquisition
of methods that build on ones created earlier, and evaluating
candidates based on track records. In summary, learning hi-
erarchical task networks from sample solutions offers great
potential for improving the efficiency and scalability of AI
planning systems, but further progress in this understudied
area is essential if we want it to provide the same benefits
that machine learning has produced elsewhere.
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