
Induction of Condensed DeterminationsPat Langley�(Langley@cs.stanford.edu)Robotics Laboratory, Computer Science Dept.Stanford University, Stanford, CA 94305AbstractIn this paper we suggest determinations as a repre-sentation of knowledge that should be easy to under-stand. We briey review determinations, which can bedisplayed in a tabular format, and their use in predic-tion, which involves a simple matching process. Wedescribe ConDet, an algorithm that uses feature se-lection to construct determinations from training data,augmented by a condensation process that collapsesrows to produce simpler structures. We report experi-ments that show condensation reduces complexity withno loss of accuracy, then discuss ConDet's relation toother work and outline directions for future studies.IntroductionUnderstandability is a major concern in knowledge dis-covery and data mining. Although it is important todiscover knowledge that is accurate, in many domainsit is also essential that users �nd that knowledge easyto interpret. Most researchers assume that logical rulesand decision trees are more understandable than otherformalisms, such as neural networks or stored cases.Although the evidence supporting this belief is mainlyanecdotal, we will not argue with it here.Rather, we will assume its validity and focus ona special class of logical rules, known as determina-tions , that we maintain are particularly understand-able. This representation di�ers from other rule frame-works in that all rules in the knowledge base refer to thesame attributes. As a result, they can be graphicallydisplayed as a `truth table', with one column for eachattribute (including the class) and one row for eachcombination of attribute values. We anticipate thatusers will like this regular structure, especially givenits similarity to widely used spreadsheet formats.In the following sections, we review the representa-tion of determinations and their use in classi�cation,followed by an algorithm for inducing these structuresbased on recent work in feature selection. Next wepresent a technique for condensing induced determina-tions, aimed at further improving their understandabil-�Also a�liated with the Institute for the Study of Learningand Expertise, 2164 Staunton Court, Palo Alto, CA 94306.

ity. After this, we present experimental studies of thesetechniques that evaluate the accuracy and complexityof the learned structures. We close with comments onrelated work and directions for future research.The Nature of DeterminationsDavies and Russell (1987) introduced determinationsas a form of background knowledge for use in analogicalreasoning, but the idea has more general applications.Briey, a determination expresses some functional de-pendency between a set of predictor attributes P anda set of predicted attributes Q, so that, given P , onecan infer Q. Of course, such knowledge is useful only ifone has information about particular combinations ofthose attributes' values. Davies and Russell proposedobtaining this information through analogy with storedcases. However, one can also envision a knowledge basecontaining a separate rule for each combination of pre-dictor values, and we will assume such structures here.Such determinations are interesting from the per-spective of understandability because they can be dis-played in a tabular format. Table 1 shows a determi-nation for a simple arti�cial domain, originally usedby Quinlan (1993) to illustrate decision trees, that in-volves deciding whether to pursue an outdoor activity.This domain includes four predictor attributes { Out-look, Humidity, Windy, and Temperature { andone predicted attribute Class, which states whetherto engage in the activity. This determination includescolumns for only three of the predictor variables, be-cause Temperature does not help to predict Class.One can use a determination for prediction or infer-ence in the same way as any other formalism that in-volves logical rules. For a given instance, one �nds therow (i.e., rule) that speci�es a combination of predictorvalues that match the instance, then infers the valuespeci�ed for the predicted attribute(s). For now, wewill assume that all attributes in a determination arediscrete, and that any continuous variables have beentransformed into discrete ones either by the knowledgebase's developer or through some automatic process.Although Davies and Russell focused on logical de-terminations that always held, one can adapt them to



Table 1: A simple determination for outdoor activities.Outlook Humidity Windy ClassSunny High True NoSunny High False NoSunny Normal True YesSunny Normal False YesOvercast High True YesOvercast High False YesOvercast Normal True YesOvercast Normal False YesRain High True NoRain High False YesRain Normal True NoRain Normal False Yessituations in which each row's outcome is probabilistic.In such domains, the natural strategy is to predict theclass most frequently associated with the matched row.Note that learned determinations may lack rows forcertain combinations of attribute values if those com-binations never occur in the training data. For suchsituations, Langley and Sage (1994) recommended bas-ing predictions on the nearest matches, while Kohavi(1995) suggested predicting a default value associatedwith the entire table. We will incorporate the lattertechnique into the system we describe here.The ability to display determinations in a tabularformat has led Kohavi (1995) to refer to them as deci-sion tables . Determinations are also equivalent to whatLangley and Sage (1994) have called oblivious decisiontrees , in which each level of the tree involves tests onthe same attribute. We will continue to use the termdeterminations here, primarily because it should befamiliar to more readers.Greedy Induction of DeterminationsGiven a set of predictive attributes, inducing a proba-bilistic determination from supervised training data isstraightforward. For each observed combination of pre-dictive values, one computes a histogram for the classvalues, then selects the most frequent class for entryin that row of the table. To determine default values,one also computes histograms for the entire trainingset, then selects the most frequent overall value.However, the above procedure assumes that the pre-dictive and predicted attributes have been speci�ed.Many data-mining tasks involve supervised learning,so that one knows which attribute must be predicted,but determining the predictive attributes is anothermatter. Fortunately, some recent work on feature se-lection has dealt with determinations or closely relatedrepresentations of knowledge.For example, Schlimmer (1993) describes a system-atic search algorithm that �nds all minimal sets of fea-tures that predict the training data, though his method

Table 2: A condensed determination based on Table 1.Outlook Humidity Windy ClassSunny High � NoSunny Normal � YesOvercast � � YesRain � True NoRain � False Yeswas not well suited for noisy data. Other work has alsodealt with this task under di�erent guises. Thus, Lan-gley and Sage (1994) report a greedy algorithm that in-duces oblivious decision trees, Aha and Bankert (1994)take a similar approach to �nding abstract cases fornearest-neighbor classi�cation, and Kohavi (1995) de-scribes a related scheme for creating decision tables.We have developed a system for learning determi-nations that operates along similar lines, which wewill call ConDet. As Langley and Sage (1994) note,methods for feature selection must take a stance onfour basic issues. First, they must specify the statefrom which search begins; ConDet starts with no fea-tures, since we believe that a bias toward simplicitywill produce more understandable structures. Second,they require some scheme for organizing search; oursystem takes a greedy approach, both for purposes ofe�ciency and to reduce chances of over�tting. Third,they must have some means of evaluating alternativefeature sets; ConDet takes a `wrapper' approach toevaluation (John, Kohavi, & Peger, 1994), which in-vokes the histogram method described above for eachcandidate feature set considered, combined with an ef-�cient version of leave-one-out to estimate its accuracy.Finally, they must indicate some halting criterion, andour system stops adding features when none of the can-didates leads to an increase in the estimated accuracy.Clearly, our approach to feature selection is far fromnew, in that ConDet draws heavily on earlier work.We review it here for purposes of completeness ratherthan novelty. This paper's main goal is to explore theadvantages of learning determinations from the view-point of �nding understandable knowledge structures.Again, we posit that determinations, especially whenpresented in tabular form, should fare better on thisdimension than decision trees or arbitrary rule sets.However, this does not mean that their understandabil-ity cannot be improved further, as we will �nd shortly.Condensing Induced DeterminationsAs we have seen, ConDet uses a feature-selectionmethod, combined with a simple counting scheme, toinduce a determination from data. This formalism hasthe same representational power as decision trees andarbitrary rule sets, but it may require more rules toencode the same knowledge, and this complexity may
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Figure 1: Learning curves for for inducing determinations on chess endgames, with and without its condensationmechanism, measuring (a) complexity of the learned determinations and (b) accuracy on separate test sets.decrease the inherent comprehensibility. For example,Quinlan's (1986) decision-tree encoding of the twelve-row determination in Table 1 involves only �ve termi-nal nodes, which is certainly simpler in some respects.Fortunately, there exists a compromise that re-tains the tabular format but allows simpler structures.These condensed determinations still display knowl-edge in terms of rows and columns, but they allowwildcard symbols to indicate that some rows have beencollapsed. For example, Table 2 shows a condenseddetermination that makes the same predictions as theoriginal table. The new structure includes a wildcard`�' for selected values of Humidity andWindy, whichreduces the total number of rows from twelve to �ve.ConDet incorporates a mechanism to condensedeterminations in this manner. The basic operatorinvolves combining rules (rows) that di�er on onlyone predictive attribute into a rule in which that at-tribute's values have been replaced with a wildcard.For tractability's sake, we restrict this operation in cer-tain ways. Rather than focusing on pairs of rules, Con-Det combines all rules that share a set of attributevalues. Also, when the system combines one set ofrules that share values, it tries to condense all othersets that have common values on those attributes.Another constraint aims to maintain the predictiveaccuracy of the original determination. Here, ConDetcombines only sets of rules that predict the same class.When all possible rows of the determination are repre-sented in the training data, this scheme does not alterthe deductive closure of the knowledge base. However,the closure can change when some rows are missing,since the situation they describe may now be coveredby the condensed rule, which has precedence over themajority class. For this reason, ConDet evaluateseach candidate condensation against the training set,retaining it only if it does not hurt the overall accuracy.

In terms of search organization, ConDet takes agreedy approach to condensing its determinations, as itdoes in constructing them. The system tentatively gen-erates a new table that results from condensing alongeach attribute, in each case combining all rules thatdi�er on that attribute but have the same class. It se-lects the condensed table with the highest training setaccuracy and continues this process, halting when ac-curacy decreases. The resulting table may not be con-densed in the optimal way, but it provides a reasonablecompromise given limited computational resources.Experiments with CondensationOur aim in developing ConDet was to improve thecomprehensibility of learned determinations withoutdecreasing their accuracy. We posit that determina-tions with fewer rows will be easier to understand thanones with more rows; we have no hard evidence for thisclaim, but it seems intuitively plausible and we will as-sume it here. Thus, to evaluate our system's behavior,we needed two dependent measures { the accuracy ofthe induced determinations and the complexity (specif-ically, the number of rows) of this knowledge structure.We tested ConDet on four domains from the UCIrepository, focusing on data sets with only nominal at-tributes. For each domain, we generated 20 randomtraining sets and 20 associated test sets. We ran Con-Det on all 20 training sets, measuring accuracy on thetest sets and complexity of the learned determination,then computed average scores. Because we were inter-ested in the e�ects of condensation, we collected thesame statistics when this process was absent.Moreover, we hypothesized that di�erences betweenthe condensed and uncondensed determinations wouldincrease with greater numbers of training cases, be-cause the data would tend to encourage the inclusionof more attributes and thus increase the number of un-



compressed rows. For this reason, we collected learn-ing curves, which measure system behavior as one in-creases the number of training cases. We expected thattheir accuracies would remain the same throughout thecourse of learning, while their complexities would di-verge for larger numbers of training instances.Figure 1 shows the comparative learning curves forthe domain of chess endgames, which involves twoclasses and 36 attributes. The results were consistentwith our predictions; Figure 1 (a) indicates that, laterin the learning curve, condensation consistently leadsto simpler determinations, whereas Figure 1 (b) re-veals that this process does not reduce accuracy. Weobserved similar results (which we do not have roomto report here) on domains involving mushroom clas-si�cation and Congressional voting records, with con-densation not a�ecting accuracy but simplifying thedeterminations. Here the size reduction was smaller,since feature selection left only a few tabular rows tocondense. We also tested our algorithm on DNA pro-moters, a domain that typically gives trouble to induc-tion methods that create axis-parallel splits. Yet thepredicted e�ect occurred even here; condensation ledto simpler determinations without reducing accuracy.Recall that our experiments were not designed toshow that ConDet is a particularly e�ective induc-tion algorithm. Other implementations of the same ba-sic approach may produce simpler determinations andhigher accuracies, though the accuracies for ConDetand C4.5 were nearly identical on the domains usedin our studies. Rather, our aim was to illustrate thatdeterminations are a viable representation for use inknowledge discovery, that feature selection combinedwith a simple counting procedure can produce accu-rate determinations for some natural domains, andthat a straightforward condensation process can sim-plify (and make more understandable) these knowledgestructures with no loss in accuracy.Related and Future WorkThe approach to induction described in this paper hasclear relations to earlier research. We have noted itsstrong debt to work on feature selection; nor are we the�rst to study methods for learning determinations fromdata, as Schlimmer (1993), Langley and Sage (1994),and Kohavi (1995) have worked on very similar tasksand, in some cases, very similar methods.At �rst glance, the condensation process appearsmore novel, but it holds features in common with com-pression techniques intended to reduce matching costsand with postpruning methods designed to avoid over-�tting. An even stronger connection exists with workin the rough sets community, which often uses tabularrepresentations of knowledge. Shan, Ziarko, Hamilton,and Cercone (1995) report an operation called valuereduction that reduces the rows in a table by replacingvalues with wildcards. Their algorithm di�ers from theone used in ConDet, but the spirit is much the same.

We have made no claims that our particular ap-proaches to the induction and simpli�cation of deter-minations are the best possible. Rather, this paper'scontribution has been to highlight determinations as apromising representation of discovered knowledge, tonote that algorithms exist for inducing such descrip-tions, and to show there are methods that can increasetheir understandability with no loss in accuracy.We believe that the most important direction for fu-ture work on this topic lies not in developing more re-�ned algorithms, but in testing our predictions aboutthe ease of understanding condensed determinationsrelative to other formalisms. This will require exper-iments with human subjects, including measures oftheir ability to understand knowledge bases, before wecan draw �rm conclusions about alternative notations.AcknowledgementsThanks to S. Sage, R. Kohavi, and G. John for discus-sions that led to the ideas in this paper. This researchwas funded by AFOSR Grant No. F49620-94-1-0118.ReferencesAha, D. W., & Bankert, R. L. (1994). Feature selectionfor case-based classi�cation of cloud types. WorkingNotes of the AAAI94 Workshop on Case-Based Rea-soning (pp. 106{112). Seattle, WA.Davies, T. R., & Russell, S. J. (1987). A logical ap-proach to reasoning by analogy. Proceedings of theTenth International Joint Conference on Arti�cialIntelligence (pp.264{270).Milan: Morgan Kaufmann.John, G. H., Kohavi, R., & Peger, K. (1994). Irrele-vant features and the subset selection problem. Pro-ceedings of the Eleventh International Conference onMachine Learning (pp. 121{129). New Brunswick,NJ: Morgan Kaufmann.Kohavi, R. (1994). The power of decision tables. Pro-ceedings of the 1995 European Conference on Ma-chine Learning (pp. 174{189). Heraklion, Crete.Langley, P., & Sage, S. (1994). Oblivious decision treesand abstract cases. Working Notes of the AAAI94Workshop on Case-Based Reasoning (pp. 113{117).Seattle, WA: AAAI Press.Quinlan, J. R. (1993). C4.5: Programs for machinelearning . San Francisco: Morgan Kaufmann.Schlimmer, J. C. (1993). E�ciently inducing determi-nations: A complete and e�cient search algorithmthat uses optimal pruning. Proceedings of the TenthInternational Conference on Machine Learning (pp.284{290). Amherst, MA: Morgan Kaufmann.Shan, N., Ziarko, W., Hamilton, H. J., & Cercone, N.(1995). Using rough sets as tools for knowledge dis-covery. Proceedings of the First International Con-ference on Knowledge Discovery and Data Mining(pp. 263{268). Montreal: Morgan Kaufmann.


