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Abstract

In this paper we describe ICARUS, an integrated architec-
ture for intelligent physical agents. The framework sup-
ports long-term memories for hierarchical concepts and
skills, along with mechanisms for recognizing concepts
that hold in the environment, determining which skills
are applicable, and selecting for execution the skill with
the highest expected value. We illustrate these processes
with examples from the domain of in-city driving, and we
report experimental studies on a package-delivery task
that examine IcARUS’ ability to combine reactive behav-
ior with persistence over time. We conclude with a dis-
cussion of related work on agent architectures and our
plans for extending the system.

1. Introduction and Background

Research on agent architectures pursues a central goal
of artificial intelligence: the creation and understand-
ing of synthetic agents that support the same capabil-
ities as humans. Such architectures aim for breadth of
coverage across many domains, and they offer an ac-
count of intelligence at the systems level, rather than
focusing on component methods designed for special-
ized tasks. They run counter to the increasing frag-
mentation of the field in that they provide integrated
frameworks for producing complex behavior in a gen-
eral, domain-independent manner.

An agent architecture — sometimes called a cogni-
tive architecture — specifies the infrastructure for an
intelligent system that remains constant across differ-
ent domains and knowledge bases. This infrastructure
includes a commitment to formalisms for represent-
ing knowledge, memories for storing this domain con-
tent, processes that utilize the knowledge, and learning
mechanisms to acquire or revise it. An agent architec-
ture can interpret different knowledge bases, just as a
computer architecture can run different programs.

In this paper, we report on the latest version of
IcArUS, an agent architecture that builds on previ-
ous work in this area but also has some novel char-
acteristics. One difference is that ICARUS includes sep-
arate memories and processes for concepts, which de-
scribe situations in the environment, and skills, which

describe how to respond to them. In addition, the archi-
tecture combines the symbolic structures common to
many agent architectures with the numeric value func-
tions used in many learning systems. Finally, ICARUS
supports reactive behavior but modulates it with con-
textual knowledge and persists in extended activities.
This latter capability is a focus of the current paper.

We begin by describing a simulated driving environ-
ment that illustrates the types of domains for which
we designed the architecture. After this, we examine
IcAarus’ long-term and short-term memories, includ-
ing their formalisms for encoding knowledge, then ex-
amine its mechanisms for operating on these memory
structures. Next we report experimental studies of an
IcARUS agent’s behavior in the driving domain, dealing
mainly with the role of persistence in executing mul-
tiple high-level tasks. In closing, we consider the intel-
lectual influences on our research and outline our plans
for extending the architecture.

2. An Illustrative Domain

To support our development and evaluation of ICARUS,
we have implemented a simulated environment for in-
city driving. All objects in this environment take the
form of rectangular parallelepipeds that sit on a Eu-
clidean plane. These include static objects like road
segments, intersections, lane lines, and buildings; they
also include vehicles, the positions and orientations
of which change over time. Vehicles can collide with
each other and with buildings, but they roll over road-
related objects without incident. Figure 1 presents a
screen shot of the graphical display for a typical city.
Each vehicle is driven by an agent that can accel-
erate or decelerate and turn its steering wheel left or
right. Associated control variables interact with realis-
tic physical laws to determine each vehicle’s motion on
a given time step, so that they speed up, slow down,
and change directions in reasonable ways. Collisions
are handled less realistically, with vehicles simply ex-
changing momentum along their lengthwise axes. Most
of the vehicles are drones controlled by the simulator it-
self. These vehicles stay in the rightmost lane and come
to a near stop at all intersections. They turn at inter-
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Figure 1: Display of the simulated environment for in-
city driving and package delivery.

sections when these occur at city boundaries and they
sometimes turn at random cross streets.

However, one vehicle in the environment is instead
controlled by an ICARUS agent. It can perceive objects
around it up to 60 feet away but no farther, including
other vehicles (with no occlusion) and the corners of
buildings, both described in agent-centered polar coor-
dinates that give each object’s distance, angle, relative
velocity, and angular velocity. The ICARUS agent also
perceives its distance and angle with respect to lane
lines, along with its own properties, including speed
and the angle of its steering wheel.

We provide the agent with top-level intentions to de-
liver packages to specific destinations. To support this
task, it can also perceive the street, numeric address,
and cross street for each undelivered package, along
with the current street, the upcoming cross street, and
the address associated with visible building corners.
The ICARUS agent does not have a map of the city,
so it must drive around in search of the target ad-
dresses, stopping to unload the appropriate package
whenever it finds one. Of course, it must drive safely in
the process, staying on the right side of the road, mak-
ing necessary turns, and avoiding collisions along the
way. Taken together, these constraints produce a chal-
lenging task environment that requires integration of
perception, reasoning, and action, as well as a combi-
nation of agent reactivity and persistence.

3. Memories and Representations

An integrated architecture should make some commit-
ment to its representation of knowledge and the mem-
ories in which that knowledge resides. In this section

we describe ICARUS” memories for long-term knowledge
and short-term beliefs, along with the general forms
taken by the contents stored in them.

3.1 Long-Term Conceptual Memory

IcARUS incorporates a long-term memory for Boolean
concepts that encodes its knowledge of familiar situ-
ations. This can include descriptions of categories for
isolated objects, like types of vehicles, but also physical
relations among objects, such as the relative position
of two vehicles or buildings. These concepts correspond
to the traditional notion of logical categories and pro-
vide ICARUS’ vocabulary for describing its experiences.
Each entry specifies the concept’s name and its argu-
ments, along with the optional fields : percepts (which
describes perceptual entities that must be present),
:positives (which gives lower-level concepts it must
match), :negatives (which states lower-level concepts
it must not match), and :tests (which specifies nu-
meric relations it must satisfy).!

Table 1 presents some concepts from the in-city driv-
ing domain. For example, corner-ahead-left describes
a situation in which the ICARUS agent perceives a
corner with an angle (measured in agent-centered ra-
dians) in its forward left quadrant. The concept in-
intersection matches when the agent perceives a near-
block-corner that resides behind it, has labeled another
as a corner-straight-ahead, and has not noted any far-
block-corner. The concept in-lane matches against sit-
uations in which the agent is on the right side of the
road, it perceives a lane line to its left, and two satis-
fied numeric tests ensure it is centered in the lane.

Taken together, these definitions organize ICARUS
categories into a conceptual hierarchy. Primitive con-
cepts are defined entirely in terms of perceptual condi-
tions and numeric tests, but higher-level concepts can
also incorporate other concepts in their definitions. The
actual form is a lattice, with primitive concepts oc-
curring at the bottom, concepts defined in terms of
them immediately above, and more complex concepts
at higher levels. Structurally, this lattice bears a close
resemblance to the Rete networks (Forgy, 1982) used
for matching in production-system architectures.

3.2 Long-Term Skill Memory

To complement its conceptual memory, ICARUS incor-
porates a long-term skill memory that encodes knowl-
edge about ways to act and achieve goals. This con-
tains specifications for skills that apply in certain situ-
ations and that produce desired effects. Skills provide
IcARUS with a repertoire of behaviors that let it influ-
ence the physical situations in which it finds itself.
Each skill has a name, arguments, and eight optional
fields. The :effects field specifies a conjunction of

1 Each Boolean concept also has an associated function that
specifies the reward or utility the agent receives when that con-
cept is true. However, these do not play a role in the current
paper, so we will not discuss them further.



Table 1: Some ICARUS concepts for in-city driving, with
variables indicated by question marks.

(corner-ahead-left (7cormer)
:percepts ((corner ?corner r ?r theta 7theta))
:tests ((< ?theta 0)

(>= 7theta -1.571)))

(in-intersection (7self)

:percepts ((corner ?ncorner theta 7theta)
(self 7?self))

:positives ((near-block-corner 7ncorner)
(corner-behind ?ncorner)
(corner-straight-ahead ?scorner))

:negatives ((far-block-corner ?fcorner))

(in-lane (71line)

:percepts ((lane-line 71lline dist 71ldist))
:positives ((on-right-side-of-road ?rline)
(left-lane-line 71line))

((> 7ldist -T7)

(< 7ldist -3))

:tests

known concepts that, taken together, encode the sit-
uation the skill is intended to achieve. Each skill can
also include a :start field, again cast as a conjunc-
tion of known concepts, which specifies the situation
that must hold to initiate the skill, and a :requires
field, which must hold throughout the skill’s execution.
For example, Table 2 shows the skill make-right-turn,
which has no explicitly stated effects, can start only if
?self is at the appropriate turning distance and in the
right lane (along with other conditions), and requires
that ?corner be a right block corner and that the vehi-
cle be near enough to it.

In addition, each IcARUS skill includes other fields
that specify how to decompose that skill into its sub-
skills. An :ordered field indicates that the agent
should consider these component skills in a par-
ticular order. For example, make-right-turn directs
the agent to consider enter-intersection, turn-past-
halfway, and complete-right-turn, and to select reac-
tively from the last subskill that is applicable, since
presumably this is closer to the desired effects. Al-
ternatively, an :unordered field identifies a choice
among subskills. For instance, the table’s decomposi-
tion for go-straight-in-lane involves six subskills, in-
cluding bear-right-in-lane and slow-for-intersection,
from which the system selects, regardless of order.

A third option is the :actions field, in which a
primitive skill like bear-right-in-lane specifies one or
more opaque actions that are directly executable. For
our driving simulator, such actions correspond to in-
creasing or decreasing the vehicle’s speed, turning its
wheels to the left or right, and depositing a pack-
age. Thus, a primitive skill plays the same role as a
STRIPS operator in a traditional planning system, with
the :start field serving as the preconditions and the
:effects field specifying the results of execution.

Actually, ICARUS specifies one or more ways to de-
compose each skill in this manner, much as a Prolog
program can include more than one Horn clause with
the same head. Different decompositions of a given skill
must have the same name, number of arguments, and
effects. However, they can differ in their start condi-
tions, requirements, and subskills. For example, the
skill straighten-in-lane has two such expansions, one
for straightening the vehicle to the right and another
for straightening it to the left.

Each skill decomposition also includes an expected
value function that encodes the utility expected if it ex-
ecutes the skill with this decomposition. This function
is specified in two parts: a : percepts field that matches
against the values of observed objects’ attributes and
a :value field that provides an arithmetic function of
these quantities. To date, we have restricted the latter
to linear functions of the numeric descriptors matched
by the skill, since this proved useful in our earlier work
on reinforcement learning. For example, the expected
value for slow-for-intersection in Table 2 depends lin-
early on the variables ”sd and ?speed, which can vary
from moment to moment.

3.3 Short-Term Memories

IcARUS’ long-term memories encode stable knowledge
about a given domain. However, to generate behavior,
the architecture also requires short-term stores that
can change rapidly. These should make contact with
long-term concepts and skills, but they must also rep-
resent temporary beliefs about the agent’s environment
and its intended activities.

One such memory is ICARUS’ perceptual buffer,
which contains descriptions of physical entities that
correspond to the output of sensors. In the driv-
ing domain, this short-lived memory contains liter-
als like (corner c0027 r 10.53 theta 0.962 dv -0.041
dtheta 0.032), which describes a perceived cor-
ner named c0027 with associated distance from the
agent r, angle theta, relative speed dv, and angular ve-
locity dtheta, all as perceived on the current time step.
Other perceptual elements for the driving environ-
ment describe aspects of lane lines, the current street
and upcoming cross street, the packages being car-
ried, and the agent’s own state.

In contrast, ICARUS’ short-term conceptual mem-
ory contains instances of concepts that are defined
in long-term concept memory. These literals encode
specific beliefs about the environment that the agent
can infer from those present in its perceptual buffer.
For instance, this memory might contain the instance
(in-intersection self), which it can infer from the in-
intersection concept shown in Table 1. This depends on
the presence in memory of instances for the concepts
near-block-corner and corner-straight-ahead, which ul-
timately ground out in perceptual entities.

Finally, ICARUS includes a short-term skill memory
that contains instances of skills the agent intends to ex-
ecute. Each of these literals specifies the skill’s name



Table 2: Some ICARUS skills for in-city driving, includ-
ing the :percepts and :value fields used to compute
expected values.

(go-straight-in-lane (7self)

irequires ((on-right-side-of-road 7yline)
(left-lane-line 7line))

:effects ((in-lane ?line)
(parallel-to-road 7self))

:unordered ((bear-left-in-lane ?self)

(bear-right-in-lane 7?self)

(cruise 7self)

(speed-up 7self)

(straighten-in-lane 7self)

(slow-for-intersection 7self))
:value (20))

(slow-for-intersection (?self)

:percepts  ((corner 7corner street-dist ?sd)
(self ?self speed 7speed))

:requires  ((should-slow-for-intersection ?self)
(near-block-corner 7corner))

tactions ((*slow-down))

:value (+ (¢ -5 ?sd) (* 20 7speed)))

(bear-right-in-lane (7self)

:percepts ((lane-line 7line dist ?d angle 7a)
(self 7self wheel-angle 7sa))

irequires ((left-lane-line 7line))

ractions ((*turn-right))

:value (+ (x 2 72d) (x 70 7a) (*x -20 ?sa) 10))

(make-right-turn (?self ?corner)

:start ((in-rightmost-lane ?rline)
(right-block-corner 7corner)
(near-block-corner ?corner)
(at-turning-dist 7self))
((right-block-corner ?corner)
(near-block-corner ?corner))
((enter-intersection 7self 7cormer)
(turn-past-halfway 7self ?7corner)
(complete-right-turn ?self))
:value (30))

:requires

:ordered

and its concrete arguments. For example, this memory
might contain the skill instance (make-right-turn self
c0027), which denotes that the driver has an explicit in-
tention to execute the make-right-turn skill with these
arguments. In addition, each skill instance includes the
expected value if executed, which is computed from the
value function associated with that skill and perceptual
attributes matched in its :percepts field. The agent
uses this number to choose among skills and among al-
ternatives within skills.

4. Interpreting and Utilizing Knowledge

Like most architectures for intelligent agents, ICARUS
operates in distinct cycles. On every cycle, the system
updates its perceptual buffer, determines which con-
cepts are matched, and adds supported beliefs to con-
ceptual short-term memory. The architecture then se-
lects a path through the skill hierarchy and executes

it, producing changes in the environment that influ-
ence decisions on the next cycle. In this section, we
discuss each of these processes in turn.

4.1 Categorization and Belief Update

On each cycle, ICARUS refreshes the contents of its per-
ceptual buffer by applying preattentive sensors to ev-
ery object within a given distance of the agent. This
produces a set of perceptual elements that initiate the
process of matching against long-term concepts. Once
these elements have been added, the matcher checks to
see which primitive concepts (ones based only on per-
ceptual descriptions) match, then adds each matched
instance to conceptual short-term memory.

Recall that ICARUS organizes concepts in a lattice
with primitive concepts at the bottom, concepts de-
fined in terms of them and perceptual elements at the
next level, and so forth. Once the system has deter-
mined which primitive concepts match, it checks more
complex ones, at each step adding matched instances
to short-term memory and then considering other con-
cepts that depend on them. ICARUS repeats this pro-
cess on each cycle, so concept instances remain in short-
term memory only if they have direct support from the
perceptual elements upon which they depend.?

4.2 Selection and Execution of Skills

As we noted earlier, ICARUS includes a short-term skill
memory which contains a set of skill instances that the
agent should consider executing. On each cycle, the ar-
chitecture examines each such instance in detail to de-
termine whether it applies to the current situation and,
if so, which one has the highest expected value.

For each skill instance, ICARUS accesses all decompo-
sitions of the general skill and checks to see if they are
applicable. A skill is applicable if, for its current vari-
able bindings, its :effects field does not match, the
:requires field matches, and, if the system has not yet
started executing it, the :start field matches the cur-
rent situation. Moreover, at least one of its subskills
must also be applicable. Since this test is recursive, a
skill is only applicable if there exists at least one accept-
able path downward to an executable action. ICARUS
considers all such acceptable paths downward through
the skill hierarchy, returning the path with the high-
est expected value for each instance in short-term skill
memory. Since variables can be bound within the body
of a skill decomposition, this set may include multi-
ple variants of each skill instance.

For each such path, the architecture computes the
expected value and selects the candidate with the high-
est utility for execution. For a given path, it uses the
value function stored with each skill and the numeric
attributes matched in that skill’s :percepts field to

2 We have also considered implementing the concept recogni-
tion process using a Rete network (Forgy, 1982) or a truth-
maintenance system, but their efficiency in such dynamic en-
vironments remains an empirical question.



calculate the expected value at each level, summing the
results along the path to compute the overall score. For
instance, for the path ((drive self), (go-straight-in-lane
self), (slow-for-intersection self), the system would sum
the expected values for all three levels to determine the
utility of slowing down. This means that the same ac-
tion can have different values on a given cycle depend-
ing on which higher-level skills are invoking it, provid-
ing a way to achieve context effects.

The architecture treats a skill expansion differently
depending on whether its components appear in an
:unordered set or an :ordered list. If they are un-
ordered, the module considers each of the subskills and
selects the one that yields the highest scoring subpath.
If they are ordered, it instead treats the list as a re-
active program that considers each subskill in reverse
order. If the final subskill is applicable, then it ex-
pands further only down paths that include that sub-
skill. Otherwise, it considers the penultimate skill, the
one before that, and so forth. The intuition is that the
subskills are ordered because later ones are closer to the
parent skill’s effects, and should be preferred over ear-
lier ones when applicable.

4.3 Reactivity and Persistence

In their naive form, reactive architectures operate as
stimulus-response systems that take only the current
state into account when deciding what action to exe-
cute. As we have seen, ICARUS moves beyond this sim-
ple approach by using a hierarchical organization of
skills to modulate the selection of actions, but Nils-
son’s (1994) teleoreactive programs and Bonasso et al.’s
(1997) T3 share similar capabilities. The architecture
also treats ordered subskills in a special manner, but
Georgeff et al.’s (1985) PRS and Freed’s (1998) APEX
also combine sequential constructs with reactivity.

Both approaches provide ICARUS and related sys-
tems with the ability to carry out extended activities,
despite their emphasis on reactive response. However,
they support such extended behavior in an all-or-none
way, whereas a more flexible notion of persistence has
attractions. People appear to fall on a continuum that
describes how easily they are interrupted when carrying
out a task or, conversely, how single-minded they are in
pursuing their goals. ICARUS incorporates a global per-
sistence parameter p that influences the agent’s behav-
ior along this dimension.

More specifically, the architecture retains a stack
that encodes the instantiated path through the skill
hierarchy that it selected on the previous cycle. When
evaluating a candidate path with unmodified value v,
IcARUS calculates the modulated path value as

s d
V= (4p- Y K K,
=1 j=1

where d is the depth of the candidate path, s is the
number of steps it shares with the previous path, p is
the persistence factor, and 0 < k < 1 is a decay term.

For example, suppose that the agent is consider-
ing the path ((drive self), (complete-right-turn self),
(straighten-wheels self) on the current cycle, and sup-
pose that the previous path shares the first two el-
ements. Thus, if p = 2, k = 0.5, and the unmod-
ified value is 10, then the modified value would be
10-(1+2-(0.5+0.25)/(0.5+ 0.25 + 0.125) = 27.14. If
the path from the previous cycle is still applicable, then
the number of shared steps s equals the depth d, giv-
ing the multiplier 1 + p.

The higher the persistence factor, the greater the
agent’s bias toward continuing to select the skills it
picked on the previous time step. Setting the factor to
zero produces fully reactive behavior that takes only
the current situation into account, whereas higher val-
ues encourage the agent to repeat its previous deci-
sions. However, such a higher setting does not rule out
responses to important changes in the environment,
which can cause entirely different skills or subskills to
become applicable or produce large enough changes in
expected values to shift behavior. An emergency situa-
tion, such as the need to slow down to avoid hitting an-
other vehicle, can still overcome the bias toward con-
tinuing the ongoing activity, but, other things being
equal, an ICARUS agent will prefer the latter course.

5. Experimental Studies of Driving

Our design for ICARUS has promising features, and we
have evaluated an earlier version of the architecture on
a simulated highway-driving task with encouraging re-
sults, including studies that demonstrate rapid learn-
ing (Shapiro et al., 2001). However, in-city driving is a
more complex domain that is appropriate for evaluat-
ing the extended framework, which introduces separate
long-term memories for concepts and skills, a short-
term conceptual memory, a short-term skill memory
that holds multiple intentions, and modulation of reac-
tivity using the persistence factor. Here we report our
experience with the environment described earlier.

To support basic driving in this domain, we devel-
oped an ICARUS program that includes 62 concepts
(on average four levels deep) and 46 skills (on aver-
age five levels deep). The high-level skills handle issues
like driving straight in a lane, getting in the rightmost
lane, slowing for an intersection, driving through an in-
tersection, turning at an intersection, and making a U
turn. Informal studies revealed that these skills are suf-
ficient to let the ICARUS agent drive in the simulated
city indefinitely without serious problems. The system
occasionally executes a poor turn and enters the wrong
lane, but it recovers from such incidents and continues.

We also developed an extended program for package
delivery that includes 19 concepts and 13 skills in addi-
tion to those for basic driving. The high-level skills here
are responsible for turning on a package’s cross street,
turning on its target street, turning around if head-
ing in the wrong direction, and dropping off a pack-
age at its target address. Informal studies with this



extended system revealed that it can deliver a set of
packages to their specified addresses, although it does
not always take the shortest route to achieve these ob-
jectives. We wrote the package-delivery concepts and
skills separately from the basic driving program, then
merged them with some tuning.

These results were encouraging, but we also wanted
to carry out more systematic studies of the architec-
ture’s behavior. In particular, we were interested in
how the persistence factor described above influences
an agent’s performance when it has choices among al-
ternative activities. Our current ICARUS program for
in-city driving and package delivery is mostly deter-
ministic, with the main choices occurring at the top
level with respect to which package the agent should
deliver next. We hypothesized that a purely reactive
agent might begin to deliver one package but be too
easily distracted when it encounters streets associated
with other packages. But we also hypothesized that a
highly persistent agent might be so set on delivering a
given package that it would not take advantage of op-
portunities to deliver others when they arise.

To evaluate these predictions, we require an explicit
measure of the agent’s performance. The natural can-
didate is the average time needed to deliver each pack-
age, so we calculated this statistic from a variety of
runs. We created a specific city layout with four hor-
izontal roads and four vertical roads, each four lanes
wide, giving nine square blocks, as shown in Figure 1,
with a total of 180 distinct addresses. We defined five
separate delivery tasks, each requiring delivery of three
packages from the same initial location. Our indepen-
dent variable was the persistence factor, which we set
to 0.0, 2.0, and 5.0. For each setting, we ran the ICARUS
agent on each of the five tasks, measured the time to
deliver all three packages, and averaged the results.

Figure 2 shows the results of this study, which are
consistent with our expectations. The system takes
longer, on average, to deliver packages when the persis-
tence factor is either low or high than when it is has an
intermediate value. Inspection of traces revealed that,
in the first case, the agent tends to shift among its top-
level intentions, attempting to deliver one package but
shifting to another even when nearing its initial objec-
tive. In contrast, the highly persistent agent selects a
package to deliver and pursues this task doggedly, even
when it encounters streets relevant to other packages.
The medium setting produces more balanced behav-
ior that falls between these extremes.

We also carried out an additional study to examine
the ICARUS agent’s ability to scale to more complex
tasks. In particular, we varied the number of blocks in
the city, using the best-scoring persistence setting from
the initial study. We generated cities with 9, 16, and
25 square blocks, each having the same number of hori-
zontal streets as vertical streets. In this experiment, the
average delivery time per package over four runs was
210.3 £+ 60.1, 228.8 + 81.4, and 292.3 + 171.2, which

Normalized cycles
1.6 1.8

14

1.2

0.8

T T T
0.0 2.0 5.0
Persistence factor

Figure 2: Average number of cycles required to deliver
a package as a function of ICARUS’ persistence factor,
normalized by the cycles when persistence is 2.0.

suggests that the system scales reasonably as one in-
creases the difficulty of finding the target addresses.

Of course, our experiments rely on some important
assumptions that would not hold with a human driver.
One is that the agent has no access to a map or direc-
tions, and must search the city until it finds the street
or cross street for a package. Another is that the system
does not learn routes from its driving experience, as do
humans when they drive repeatedly in a city. We might
encode route knowledge manually as ICARUS skills, and
we plan to add such content in future versions of the
driving agent. Learning such skills is currently beyond
the capabilities of ICARUS, although this topic is high
on our agenda. Such a facility should improve further
the agent’s ability to handle complex delivery tasks,
but might reduce the influence of the persistence fac-
tor, which comes into play because the agent has little
knowledge on which to base its decisions.

6. Intellectual Precursors

Despite its novel features, ICARUS draws on many ideas
that have a long history in artificial intelligence and
cognitive science. One intellectual influence comes from
the cognitive architecture movement, which aims to de-
velop integrated frameworks that support general intel-
ligent behavior. A number of research groups have de-
veloped a variety of such architectures, two of the best
known being Soar (Laird et al., 1987) and ACT-R (An-
derson, 1993). Many cognitive architectures have been
cast as production systems, which encode long-term
knowledge as a set of condition-action rules that match
against and modify the contents of short-term mem-
ory. ICARUS’ design incorporates central ideas from this
framework, including a reliance on pattern matching,
but it also explicitly organizes long-term memory into
concept and skill hierarchies, which differs from the im-
plicit organization in production systems.



IcAaRrUs also borrows from a distinct tradition of
reactive control (e.g., Georgeoff et al., 1985; Nils-
son, 1994; Schoppers, 1987), which emphasizes sensor-
driven execution in response to changing environmen-
tal situations. Most such work takes a fully reactive ap-
proach, although some systems, like PRS, combine re-
active constructs with sequential ones. More recent ef-
forts (e.g., Bonasso et al., 1997) have combined ideas
from the reactive and deliberative frameworks. ICARUS
has similar goals in that it incorporates concepts from
these traditions in a framework that supports physi-
cal agents that both reason and act.

Early reactive frameworks specified behavior en-
tirely in qualitative or logical terms, but the paradigm
has much in common with research on Q learning (e.g.,
Watkins & Dayan, 1992), which assumes stimulus-
response systems that associate value functions with
situation-action pairs. ICARUS extends this notion by
attaching numeric functions to higher-level skills, in a
spirit akin to work on hierarchical reinforcement learn-
ing (e.g., Kaelbling, 1993; Andre & Russell, 2000). A
related influence comes from decision theory (Howard,
1968), which addresses value-driven decision making
in uncertain circumstances. ICARUS relies centrally on
the decision-theoretic notion of alternative actions that
produce outcomes with different expected values.

Our general approach also has much in common with
knowledge-based and case-based approaches to plan-
ning and execution. Howe (1995) and Freed (1998) de-
scribe planning systems that combine partial plans and
execute them in complex environments, revising them
when unexpected situations arise. Hammond (1993)
even describes a program of this sort that delivers pack-
ages in a simulated driving environment. ICARUS falls
more toward the reactive end of the spectrum than
these systems, but the differences may lessen as we in-
troduce planning capabilities. ICARUS also shares im-
portant ideas with Albus and Meystel’s (2001) RCS
architecture, which organizes knowledge hierarchically
and makes a clear distinction between logical struc-
tures and value judgments.

Finally, the agent architecture we have described
herein retains many ideas from earlier versions of
Icarus. Even the earliest designs (e.g., Langley et al.,
1991) focused on reactive agents for physical environ-
ments, and initial versions included distinct but con-
nected long-term memories for concepts and plans. A
more recent incarnation (Shapiro & Langley, 1999) in-
troduced reactive execution of hierarchical skills. The
current ICARUS incorporates ideas from each of its pre-
decessors, but also introduces novel features, including
separate memories, both short-term and long-term, for
concepts and skills, as well as the utilization of a per-
sistence factor to influence decisions.

Every architecture for physical agents must take
some position on the dual issues of reactivity and per-
sistence. As we have noted, some commit to purely re-
active control with no memory of previous decisions,
whereas others augment reactive methods with sequen-

tial constructs that ensure activities happen in a speci-
fied order. To our knowledge, ICARUS is the first archi-
tecture to incorporate a flexible notion of persistence
that modulates rather than overrides reactivity.

7. Directions for Future Research

Although the latest version of ICARUS constitutes a sig-
nificant advance over its predecessors, the architecture
still lacks many capabilities that we would expect in
a general intelligent agent. One such omission relates
to our framework’s emphasis on execution over plan-
ning, which is important in its own right. In response,
we intend to add a new module that chains backwards
when the agent attempts to execute a skill with un-
met requirements, along with another mechanism that
supports projecting the effects of future activities on
the environment. The current representation of skills
should support these extensions, though we must still
specify when the agent carries out such cognitive ac-
tivities and how it selects among them.

Another limitation of the current architecture is its
restriction to executing one skill on each time step. Fu-
ture versions should support the execution of skills in
parallel, but place resource constraints on this ability.
This will require an expanded formalism for skills that
specifies the resources they consume on each cycle. We
will also need to generalize ICARUS’ current method for
skill selection to take expected resource consumption
into account. We envision a decision-theoretic treat-
ment that trades costs against benefits. An important
special case involves perceiving the environment, which
currently happens automatically through preattentive
processes. A more realistic scheme would handle some
perception through explicit sensing actions that require
resources and thus must be invoked selectively.

Our description of ICARUS has emphasized the hi-
erarchical nature of long-term skill memory, but, as
it stands, the architecture offers no account of this
hierarchy’s acquisition. One promising idea involves
caching the results of successful backward chaining into
a higher-level skill that includes the unsatisfied skill
and the repairing skill as its components. This ap-
proach is similar in spirit to methods for chunking in
Soar (Laird et al., 1987) and macro-operator forma-
tion (e.g., Iba, 1989). However, previous work along
these lines has constructed ‘flat” knowledge elements,
whereas cached ICARUS skills would retain their origi-
nal structures as part of the new hierarchical skill.

Finally, like most agent architectures, ICARUS lacks
any episodic memory to store its own previous expe-
rience. Knowledge about concept instances that were
once true and skills that it once executed would sup-
port important abilities, such as answering questions
about past events. Upon reflection, episodic memory
seems closely related to short-term memory, in that it
deals with specific instances of general concepts and
skills. We intend to encode such memories as variants
on short-term literals that include time markers to indi-



cate when they entered and left the short-term stores.
Such traces will also include average statistics about
the values expected and achieved when executing in-
stantiated skills. The mechanisms responsible for re-
trieval from episodic memory are less clear and remain
an open issue for future research.

8. Concluding Remarks

In this paper we described ICARUS, an architecture
for intelligent physical agents that incorporates a num-
ber of features which distinguish it from earlier frame-
works. ICARUS includes a long-term memory for con-
cepts, which it defines as logical conjunctions of per-
ceptual elements and other concepts, and a separate
memory for skills, which it defines in terms of concepts
and component skills. A categorization process deposits
concept instances in short-term memory, while a sepa-
rate process checks this memory to determine whether
skills are applicable and utilizes numeric value func-
tions to select among acceptable candidates.

We focused especially on ICARUS’ ability to com-
bine reactivity with persistence, which lets it respond
to changes in the environment while pursuing high-level
objectives. We demonstrated this ability in a simulated
in-city driving domain that involved delivering multiple
packages to their street addresses. Experimental stud-
ies of an ICARUS agent’s behavior showed that the ar-
chitecture supports this task, but also suggested that
some settings for its persistence factor produced more
desirable results than others.

Despite these encouraging results, ICARUS remains
an immature architecture relative to older frameworks,
and we outlined our plans to extend it along a num-
ber of dimensions. In general, we believe that ICARUS’
value-driven approach, along with its other distinctive
features, will support functionalities that are difficult
to achieve in more traditional approaches. We hope
to demonstrate these abilities in our future work on
IcARUS agents for driving and other physical domains.
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