Constructing Game Agents from Video of Human Behavior
Nan Li!, David J. Stracuzzi', Gary Cleveland', Tolga Konik?,

Dan Shapiro?, Matthew Molineaux?®, David Aha*, Kamal Ali?

1School of Computing and Informatics, Arizona State University

2Computational Learning Laboratory, Stanford University

3Knexus Research, Springfield, VA
4Naval Research Laboratory, Code 5514, Washington, DC

Abstract

Developing computer game agents is often a lengthy and
expensive undertaking. Detailed domain knowledge and
decision-making procedures must be encoded into the agent
to achieve realistic behavior. In this paper, we simplify this
process by using the ICARUS cognitive architecture to con-
struct game agents. The system acquires structured, high fi-
delity methods for agents that utilize a vocabulary of con-
cepts familiar to game experts. We demonstrate our ap-
proach by first acquiring behaviors for football agents from
video footage of college football games, and then applying
the agents in a football simulator.

Introduction

Building agents that act intelligently in computer games is
an important task in game development. Traditional meth-
ods for encoding game agents are time-consuming, and the
resulting behaviors are often not very flexible. Cognitive
architectures (Newell 1990), which are designed to model
human-level intelligence, are a relatively recent addition to
the game developer’s toolkit in constructing autonomous
agents. They have the advantage of providing mechanisms
for reasoning and decision-making, so that the game devel-
opers need only specify static domain knowledge. More-
over, the architectures can acquire any missing or hard-to-
specify knowledge through domain experience and observa-
tion of other agents.

In this paper, we apply the ICARUS cognitive architec-
ture to the problem of constructing flexible game agents for
a football simulator. The system takes in discrete percep-
tual traces generated from video footage of college foot-
ball games, analyzes the traces with provided background
knowledge, and learns complex behaviors that the agents
can then apply in a simulated football game. The acquired
knowledge is composable, which allows ICARUS to generate
team behaviors not observed in the video, and is encoded in
a human interpretable format, which allows for subsequent
modification by game developers.

We begin by introducing the football videos observed by
ICARUS, along with the Rush 2008 football simulator, which
we use to demonstrate our approach. We then review the

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ICARUS cognitive architecture, including recent work on ac-
quiring domain knowledge from observed human behavior.
Next, we demonstrate and evaluate the behaviors acquired
and executed by ICARUS. Finally, we discuss the impact of
this work on the game-agent construction task, and conclude
with a summary of related work and directions for future de-
velopment.

From Video to Game Agents

The specific task that we consider in this paper is to acquire
football agent behaviors by observing videos of several col-
lege football plays. The learned behaviors should have high
fidelity with respect to the original videos, and should ex-
hibit utility consistent with the game of football when ex-
ecuted in the simulator. We first preprocess the raw video
data into sequences of ICARUS perceptions, which the ar-
chitecture uses to acquire game agent behaviors. We then
test the ICARUS agents in the Rush simulator by comparing
against hand-crafted agents written in the simulator’s own
play-design language. In the remainder of this section, we
describe the video which our method will observe, and the
simulator in which we will test the acquired behaviors.

The College Football Video

The raw videos used in our experiments depict individual
plays as executed by the Oregon State University football
team. The video was shot via a panning and zooming camera
that is fixed at the top of the stadium. The video corresponds
to that used by coaches, and the camera operator attempts to
keep as much of the action in view as possible. A typical
shot from our video is shown in Figure 1.

ICARUS does not possess any specialized mechanisms for
handling visual data. We therefore convert preprocessed ver-
sions of the videos into a sequence of ICARUS perceptions
for the architecture to observe. Specifically, the percep-
tual representation includes: (1) the 2D field coordinates of
each player at each video frame (Hess and Fern 2009), (2)
player labels describing the functional role of each player
(e.g. quarterback, running back, etc), and (3) activity labels
describing the low-level activity (such as running or block-
ing) of each player throughout the play. We used the activ-
ity labels and player labels generated by (Hess, Fern, and
Mortenson 2007) to produce the perception sequence for the

play.

Figure 1: A typical frame from the football video.

The Rush 2008 Football Simulator

Rush 2008, a research extension to Rush 2005,' simulates
an eight player variant of American football (which typi-
cally has eleven players per team). Figure 2 shows a typical
starting formation for the simulated plays. The rules and ob-
jectives in Rush are similar to those in American football.
Each player is assigned a role, such as quarterback (QB) or
running back (RB), and can be controlled by a set of instruc-
tions. Players are controlled either by assigning them a high-
level goal such as pass route cross out at yard 15 (which in-
structs a receiver to run 15 yards down-field, make a hard
right turn, and then keep running to try to catch a pass), or
by assigning specific instructions such as stride forward on
each clock tick. The hand-coded plays in our experiments
use the former types of instructions to take advantage of the
expertise built in to the simulator, while ICARUS uses the lat-
ter form to demonstrate the architecture’s ability to construct
such knowledge on its own.

We instrumented Rush so that ICARUS can perceive all
players and objects on the field and control the actions of
each offensive player on a tick-by-tick basis. Each offensive
player shares perception and knowledge with the other of-
fensive players, and carries out actions selected by ICARUS.
Example actions include (throwTo <receiver>), which in-
structs the QB to pass to a specific teammate, and (stride
<direction)>, which tells a player to run in one of eight
directions for one clock tick. Defensive players are con-
trolled by the simulator, which randomly selects one of sev-
eral available strategies for each play.

A Brief Review of The Icarus Architecture

IcArus (Langley and Choi 2006) shares many features with
other cognitive architectures like Soar (Laird, Rosenbloom,
and Newell 1986) and ACT-R (Anderson 1983). For ex-
ample, all three architectures distinguish between short-term
and long-term knowledge bases, and provide goal-driven but
reactive execution. ICARUS also includes several novel fea-
tures, such as separate storage for conceptual and skill (be-
havioral) knowledge, and skills (behaviors) indexed by the

'http://rush2005.sourceforge.net/

Figure 2: A Rush 2008 starting formation for the offensive
(bottom) and defensive (top) teams, with player/position an-
notations.

goals they achieve. In this section, we briefly review key
aspects of the framework to provide background for the ex-
periments and demonstration.

Beliefs, Concepts and Inference

One of the principal tasks that an intelligent agent performs
is reasoning about its environment. This is necessary to de-
termine which actions the agent must carry out to achieve
its goals. ICARUS performs this inference task by match-
ing the conceptual structures in its long-term storage against
percepts and beliefs stored in short-term knowledge bases.

ICARUS operates in cycles that begin when an agent re-
ceives low-level perceptual information about its environ-
ment. Percepts typically describe the attributes of a single
entity (such as a player), and are very short lived. For ex-
ample, the percepts derived from the college football video
last only for the duration of one video frame (1/30'" of a
second) before being replaced with new information.

Intelligent behavior requires more than low-level percep-
tual information. ICARUS therefore includes an episodic be-
lief buffer (Stracuzzi et al. 2009) that contains higher-level
inferences about the environment. Beliefs represent rela-
tions among entities, and have two associated time stamps.
The first indicates the first time at which the belief held,
while the second indicates the last time at which the belief
held continuously. All beliefs inferred during the current
episode are retained in the belief buffer, allowing the agent
to reason about events over time.

ICARUS beliefs are instances of generalized concepts
stated in a hierarchically organized, long-term conceptual
knowledge base. Each concept has a head, which consists
of a predicate with arguments, and a body, which defines
the situations under which the concept is true as shown in
Table 1. The relations field specifies the subconcepts a con-
cept depends upon along with their associated time stamps
which correspond to the time stamps on beliefs. The con-
straints field then describes the temporal relations among the
subconcepts using these time stamps. For example, the con-
cept possession aggregates and stores perceptual informa-
tion about the ball carrier into belief memory (symbols pre-

Table 1: Sample concepts for the football domain.

Table 2: Sample skills from football.

; Indicates that ?agent carried ?ball in the current time step
((possession ?agent ?ball)
:percepts ((ball ?ball carriedby ?agent)))

s ?passer dropped back ?n-steps after receiving the snap
((dropped-back ?passer n-steps)
rrelations (((snap-completed ?passer ?ball) ?snap-start NOW)
((possession ?passer ?ball) ?poss-start ?poss-end)
((moved-distance ?passer ™n-steps S)
?mov-start 7mov-end))
:constraints ((< ?snap-start ?poss-start)
(< mov-end ?poss-end)
(= 2mov-end NOW)))

ceded by a question mark denote variables). Similarly, the
constraints field of drop-back-completed states that ?passer
must have the possession of ?ball until he has finished drop-
ping back. Note that concepts can only describe properties
of states. They do not contain information about how to
achieve these properties.

IcARUS updates the episodic memory at the start of each
cycle by matching the concept definitions to percepts and
existing beliefs in a bottom-up manner. After the percepts
are updated, low-level concepts (such as possession) are
matched against them and the results are stored as beliefs.
This then triggers matching against higher-level concept def-
initions. The process continues until the deductive closure of
percepts, beliefs and concepts has been computed.

Goals, Skills and Execution

After inferring a set of beliefs about its environment,
ICARUS then evaluates its skill knowledge (behavioral meth-
ods) and decides which actions to take. This is how the ar-
chitecture controls behavior. Toward this end, the architec-
ture uses a goal buffer, which includes goals the agent wants
to achieve. It then retrieves behaviors capable of achieving
these goals from the long-term skill knowledge base.

Like concepts, the skills are hierarchically organized and
are indexed by the concepts defined in the conceptual knowl-
edge base. Each skill consists of a head, which specifies the
goal the agent achieves after carrying out the skill, a set of
start conditions, that must be satisfied to initiate the skill,
and a body, which states the steps the agent should follow
to achieve the goal. For example, Table 2 shows the method
for completing a cross-pattern, which requires the agent to
first run downfield (north) for ?dist, then turn in ?dir (east
or west) and run until the ball is caught. Cross-reception-
completed builds on this by having the agent run north with
the ball until it is tackled.

Given a goal and the knowledge base of methods, execu-
tion proceeds by first selecting an unsatisfied top level goal,
and then finding methods that are known to achieve the goal.
Since one behavior may refer to others, the system will find
an executable path through the skill hierarchy which termi-
nates with a low-level behavior that corresponds to an ac-
tion that the agent can execute directly in the environment.
ICARUS continues executing along this path until the goal is

; skill for running downfield ?dist yards, then turning and
s running in 2dir until the ball is caught (by any agent)
((cross-pattern-completed ?agent ?dist ?dir)
:start ((sccross-pattern-completed-c2 ?agent ?dir))
:subgoals ((moved-distance-in-general-direction ?agent ?dist N)
(moved-until-ball-caught ?agent ?dir)))

; skill for running a cross pattern, then catching and
s running with the ball
((cross-reception-completed ?agent ?dist ?dir)
:subgoals ((cross-pattern-completed ?agent ?dist ?dir)
(ran-with-ball-until-tackled ?agent ?ball)))

achieved or the selected skills no longer apply, in which case
it must determine a new skill path from the current state to
the selected goal.

Learning Skills from Video

Manual construction of behaviors, particularly in the con-
text of temporal constraints, remains time-consuming. In
previous work, Li et al. (2009) integrated a learning method
that acquires hierarchical skills from problem solutions into
IcARrus. The input consists of a goal, a set of concepts suf-
ficient for interpreting the observed agent’s behavior, a set
of low-level methods available in the environment, and a se-
quence of observed perceptual states. Optionally, any known
or previously acquired methods may be included.

The algorithm runs in three steps. First, the system ob-
serves the video of the game and infers beliefs about each
state, storing the results in belief memory as described
above. Next, the agent explains how the goal was achieved
using both existing conceptual and procedural knowledge.
The agent first tries to explain the trace with known skills
that both achieve the goal and are consistent with the obser-
vations. It then selects one of the candidate skills and parses
the observation trace into subtraces based on the times when
the start conditions and subgoals were achieved.

If the agent fails to explain the trace with procedural
knowledge, it then attempts to use concepts. First, it re-
trieves from memory the belief associated with the goal, in-
cluding the lower-level beliefs that support the goal belief.
Then, it parses the observation sequence based on the times
when these subbeliefs became true. This explanation pro-
cess continues recursively until the agent builds explanations
that show what sequence of events and/or known behaviors
led the agent to achieve its goal. These then form the ba-
sis for learning new behaviors. Note that new methods are
constructed on top of existing methods based on the derived
explanations. Li et. al (2009) provide a more detailed dis-
cussion of the learning algorithm.

The algorithm for acquiring methods is not equivalent
to compiling information already contained in the provided
concept hierarchy into an operational form. The learning
mechanism must recognize which parts of a concept defini-
tion are start conditions, and which are subgoals. If we sim-
ply consider all subconcepts in a definition to be subgoals,
then ICARUS will believe that the learned behaviors apply in

many situations that they do not. The result would be that
agents take many fruitless actions in the environment. Sim-
ilarly, the temporal constraints in a concept definition only
provide partial ordering information about the subgoals in a
new method. Although the concepts in football tend to pro-
vide a total ordering over the subgoals, this is not generally
true, and our approach does not rely on this property.

Demonstration and Evaluation in Rush 2008

Our objectives in evaluating the learned skills are to show
that they have both high fidelity with respect to the original
video, and utility similar to the observed play with respect to
the game of football. To evaluate the former, we performed
a qualitative comparison of the plays executed by ICARUS
and Rush to the original videos. For the latter, we compared
the yardage gained by the learned agents to yardage gained
by the hand-constructed agents for the same play.

Three steps were required to acquire the skills from video
and then execute them in Rush. First, the raw video was
preprocessed to produce a sequence of ICARUS perceptual
states. Second, we applied the learning system to observe
the preprocessed sequence only once and construct skills
based on the observation. Finally, we mapped the learned
eleven-player skills onto an eight-player team, and executed
the resulting skills in Rush. We have discussed the first two
steps in previous sections. Below we provide details for
mapping plays into Rush, along with the results.

Applying ICARUS and Mapping Plays into Rush

As noted, a team in Rush consists of eight players while the
teams from the video have eleven players. We therefore map
the eleven-player skills learned from the video into skills for
the eight Rush players. In practice, we can accomplish this
simply by dropping the goals associated with three of the
players. Ideally, we would ignore the players that have the
least impact on the play.

Figure 3 shows a play diagram for play 18, observed by
ICARUS during testing. Rush plays typically include three
offensive linemen (LG, C, and RG) along with some combi-
nation of four running backs and receivers. The college play
shown in Figure 3 has five linemen and five backs/receivers.
To map this play into Rush, we therefore dropped two line-
men (LT and RT) and one running back (RB), all of which
had top-level goals of pass-blocking for the duration of the
play. ICARUS used the goals for the eight remaining players
to guide execution in Rush.

Evaluating Plays in Rush

To measure the quality of the constructed agents, the plays
executed by both ICARUS and the hand-coded Rush agents
were evaluated according to several qualitative measures,
along with average yardage gained by the plays. We allowed
ICARUS to observe three distinct passing plays (13, 18, and
63) for learning purposes. The hand-coded agents were cre-
ated by a Rush expert. Both sets of agents were run 10 times
on each of the three plays in Rush to help factor out random
differences in the behavior of the defense.

run E

run N

line of

scrimmage

B3
run E
%
’

scramble Phd
-
“throw

blocka
(2

block

v
_ - catch

suni
9'b ock|

A

A
\
N
\
\

Figure 3: Diagram of play 18 with annotations indicating
actions taken by individual players.

The resulting plays were evaluated according to six qual-
itative measures, three of which have associated yardage
measures. The qualitative measures indicate a percentage
of the 10 test plays in which the desired behavior appeared,
while the numeric values show the average yardage gained
on the subset of plays that meet the qualitative criterion.
Pocket refers to the behavior of the three offensive lines-
men, who should block for the quarterback while he seeks
his pass receiver. Receivers refers to the behavior of the run-
ning backs, wide receivers, and tight ends in the play, and
is only satisfied if all of the receivers successfully complete
their assigned pass patterns. Interceptions are undesirable
events that occur when a defensive player catches the ball
thrown by the quarterback. The numeric result for an in-
terception is zero yards. Unintended refers to the case in
which the quarterback throws the ball to an offensive player
other than the intended receiver. This is less desirable than
passing to the intended receiver, but may still net positive
yardage. Intended refers to the case in which the quarterback
completes a pass to the intended receiver (as determined by
the videos). Team indicates cases in which all players on
the team successfully achieved their respective goals. As-
sociated yardage indicates average yards gained over all 10
plays, regardless of how many plays actually succeeded.

Results

In all three plays, the learning system successfully cap-
tured the play patterns associated with all offensive players.
Note that since our learning mechanism relies on relational
knowledge, it captures general skills from the noisy percep-
tual sequences generated from the videos provided that the
noise does not render portions of the play unobservable.
Table 3 shows the results of testing both the ICARUS and
hand-constructed agents on all three of the observed video
plays. In play 13, shown in Figure 4, ICARUS outper-
forms the hand-crafted agents along all dimensions, gaining
more yards per attempt, and generating more of the behavior
found in the video. Notably, the hand-crafted agents failed

Table 3: Qualitative and quantitative test results for both ICARUS and hand-crafted agents.

| | pocket | receivers | interceptions | unintended | intended | team |
IcARUS-13 | 100% 100% 0% 40%, 1.3y | 40%, 12.9y | 40%, 5.7y
Hand-13 100% 10% 20% 0% 50%, 10.5y 10%, 5.3y
IcARUS-18 | 100% 0% 0% 0% 100%, -0.9y | 0%, -0.9y
Hand-18 100% 100% 0% 0% 100%, 2.3y | 100%, 2.3y
ICARUS-63 | 100% 100% 0% 0% 100%, 6.1y | 100%, 6.1y
Hand-63 100% 100% 0% 0% 100%, 9.9y | 100%, 9.9y

to have the inner wide receiver, LWR, complete his slant
passing route in several of the plays because the intended
receiver caught the ball before LWR could turn toward the
northwest. This indicates a possible discrepancy between
the speed of the receivers in the video and the simulator be-
cause this particular receiver route was longer than the oth-
ers. Also noteworthy is the relatively high rate of reception
by an unintended receiver for ICARUS. This is caused by
a combination of the play design, which has two receivers
crossing the ball’s trajectory at approximately the same time,
and again differences in simulated and real player speeds. In
the original play, there was no ambiguity as to who could
or should catch the ball. Both issues suggest that additional
fine-tuning of the play in the simulator may be helpful.

ICARUS was less successful at navigating play 18, shown
in Figure 3. The average yardage gained was negative in
this case, although this is not unreasonable behavior for a
short pass behind the line of scrimmage. The hand-crafted
agent gained an average of 2.3 yards per attempt, suggest-
ing that some fine-tuning of the ICARUS play could improve
performance. ICARUS also failed to successfully complete
its receiver patterns. In this case, all of the failures stemmed

catch

~A run—-with—ball

2

(/04/1’/

run N

line of

scrimmage

run N

Figure 4: Diagram of video play 13 with annotations indi-
cating actions taken by individual players.

from a single error. The architecture assigned too deep of a
pattern to the tight end, RTE, rendering him unable to com-
plete his pattern before the receiver caught the ball. This is
another case in which fine-tuning of the play in the simulator
could improve performance noticeably. All other receivers
executed successfully.

In play 63, both approaches performed well. On average,
IcARUS tended to gain fewer yards than the hand-crafted
agent, but closer inspection of the video and resulting agents
suggests that this is because ICARUS is more faithful to the
video than the hand-crafted agents. Specifically, the in-
tended receiver, RWR, runs a short crossing pattern (five
yards north, followed by a hard cut to the west). ICARUS
duplicates this exactly, but the hand-crafted agent runs diag-
onally northeast until he catches the ball, ultimately putting
him further up-field than the ICARUS agent. Such a ma-
neuver may not have been possible in the original 11-player
game, as the additional players may have impeded the re-
ceiver’s progress. This also suggests that additional learning
in the simulator may be fruitful.

Related and Future Work

Constructing autonomous agents is an important task in
video game development. Games such as Quake, Warcraft
III, and Halo 2 (Damian 2005) use finite state machines to
control autonomous agent. However, the complexity of fi-

stop/wait

run W T
line of

scrimmage

_run—with-ball _
- catch r
\

run N

scramble \\

\ throw

Figure 5: Diagram of video play 63 with annotations indi-
cating actions taken by individual players.

nite state machines, hierarchical or otherwise, increases dra-
matically with the complexity of the game (Orkin 2006).
Scripts are another approach to modeling agents used for
example in Neverwinter Nights and Unreal Tournament. As
with state machines, script complexity increases quickly as
agent behavior becomes more complicated. Scripts are also
typically composed offline, leading to less flexible agents.
Our work differs from these in that the cognitive architec-
ture provides a higher-level language with which to model
autonomous agents.

The use of artificial intelligence in games is a recent de-
velopment aimed at reducing the effort required to construct
agents. For example, Kelly et al. (2008) use offline plan-
ning with hierarchical task networks to generate scripts auto-
matically. This approach requires expert knowledge to build
these hierarchical task networks, while our system acquires
similar knowledge automatically. An alternate approach
uses reinforcement learning algorithms (Bradley and Hayes
2005; Nason and Laird 2005) to allow an agent to learn
through experience. Our approach differs because learning
is analytic and based on observed video rather than agent
experience. This makes our approach much more computa-
tionally efficient.

There are many possible avenues for future development
of this work. First, the current learning system focuses on
learning from single agent behavior. However, football is
a multi-agent game with sophisticated coordination among
agents. Ideally the system should learn knowledge about
timing and cooperation among multiple agents. Second, the
skills and plays acquired from the observed video can also
be further polished by learning within the Rush simulator, as
noted in the context of all three demonstration plays. This
can be as simple as modifying the arguments given to the
learned methods, or as complex as modifying the structure
of the learned behaviors. Finally, the current learning system
relies on a concept hierarchy. We are in the process of devel-
oping concept learning mechanisms which, once integrated
with ICARUS will reduce the amount of expert knowledge
required by the system in the form of concepts.

Conclusion

Constructing autonomous agents is an essential task in game
development. In this paper, we outlined an approach to
acquiring complex agent behavior based on observation of
video footage of college football games. We showed that
our cognitive architecture-based approach produced agents
competitive with hand-engineered agents, and provided sev-
eral possible next steps to further improving the quality of
the learned agents. Our results suggest that using architec-
tures for intelligent agents, such as ICARUS, is a viable and
efficient approach to constructing intelligent game-agents
that utilizes a domain-relevant vocabulary, and reduces the
amount of required expert design and knowledge.

Acknowledgments

This material is based in part on research sponsored
by DARPA under agreement FA8750-05-2-0283. The
U. S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be inter-
preted as representing the official policies or endorsements,
either expressed or implied, of DARPA or the U. S. Govern-
ment.

References

Anderson, J. 1983. A spreading activation theory of
memory. Journal of Verbal Learning and Verbal Behav-
ior 22:261-295.

Bradley, J., and Hayes, G. 2005. Group utility gunctions:
Learning equilibria between groups of agents in computer
games by modifying the reinforcement signal. In Proceed-
ings of the IEEE Congress on Evolutionary Computation,
1914-1921. Edinburgh, UK: IEEE Press.

Damian, I. 2005. Handling complexity in the Halo 2 Al
In Game Developers Conference.

Hess, R., and Fern, A. 2009. Discriminatively trained par-
ticle filters for complex multi-object tracking. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. Miami, FL: IEEE Press.

Hess, R.; Fern, A.; and Mortenson, E. 2007. Mixture-
of-parts pictorial structures for objects with variable part
sets. In Proceedings of the Eleventh IEEE International
Conference on Computer Vision. Rio de Janeiro, Brazil:
IEEE Press.

Kelley, J. P; Botea, A.; and Koenig, S. 2008. Offline
planning with hierarchical task networks in video games.
In Darken, C., and Mateas, M., eds., Proceedings of the
Fourth Artificial Intelligence and Interactive Digital Enter-
tainment Conference. Stanford, CA: AAAI Press.

Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986.
Chunking in Soar: The anatomy of a general learning
mechanism. Machine Learning 1:11-46.

Langley, P, and Choi, D. 2006. A unified cogni-
tive architecture for physical agents. In Preceedings of
the Twenty-First National Conference on Artificial Intelli-
gence. Boston: AAAI Press.

Li, N.; Stracuzzi, D. J.; Langley, P.; and Nejati, N. 20009.
Learning hierarchical skills from problem solutions using
means-ends analysis. In Proceedings of the 31st Annual
Meeting of the Cognitive Science Society. Amsterdam,
Netherlands: Cognitive Science Society, Inc.

Nason, S., and Laird, J. E. 2005. Soar-RL: Integrating rein-
forcement learning with Soar. Cognitive Systems Research
6(1):51-59.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, MA: Harvard University Press.

Orkin, J. 2006. Three states and a plan: The Al of FE.A.R.
In Game Developers Conference.

Stracuzzi, D. J.; Li, N.; Cleveland, G.; and Langley, P.
2009. Representing and reasoning over time in a sym-
bolic cognitive architecture. In Proceedings of the 31st
Annual Meeting of the Cognitive Science Society. Ams-
terdam, Netherlands: Cognitive Science Society, Inc.

