Communicating Valuesto Autonomous Agents

Daniel Shapiro

Ingtitute for the Study of Learning and Expertise
2164 Staunton Court, Palo Alto, CA 94306
shapiro@ise.org

Abstract

Although autonomous systems can support awide variety of
application goas, their perceived risk inhibits their
deployment. While this problem is traditionally associated
with an agent’s skills, we take the novel perspective that the
issue is communication. In this view, the agent simply needs
a better representation of the user’'s interests so that its
choices will not produce unintended effects. This paper
proposes a methodology for constructing artificial agents
that is rooted in this perspective. In particular, we show
how the goal of aligning agent held objective functions with
human utility can be transformed into a practica
methodology for constructing, and then utilizing agents that
provably act in their users' best interests.

Introduction

Autonomous agents are technological artifacts that perform
tasks for people. They sense their environment, relate their
perceptions to their tasks, and then select an appropriate
response. In principle, such agents can perform complex
functions, which give them the potential to greatly expand
our reach. However, the risk increases as autonomy grows.
Agents acting in critical applications can make catastrophic
errors, while a complex artifact operating outside of human
supervision seems amost guaranteed to drift from our
intent over time. These concerns create a significant
barrier to deployment. As a result, we need technology to
enhance the trustworthiness of autonomous systems.

Current methods for supplying trust operate in one of
several broad ways. First, we can develop skills that
handle a wider variety of environmental conditions (a goal
of reactive systems). Next, engineers can constrain the
environment to make the available technology more robust,
as with robotic assembly lines. However, thisis infeasible
in many circumstances (e.g., for robots on Mars). A third
approach employs algorithms that support predictive
analysis and/or formal guarantees, generally with the caveat
that the environment must satisfy certain assumptions.
Unfortunately, this approach restricts the complexity of the
relevant tasks. In contrast, research that expands the scope
of feasible tasks can negatively impact trust (e.g., work on
agent architectures), as increased autonomy often elevates
perceived risk.

While each of these methods associates trustworthiness
with agent skills, we treat communication as the core issue.
In this view, the agent is the user's delegate, and the
problem is to provide it with a representation of its user’'s

Paul Collopy

DFM Consulting, Inc.
Post Office Box 247, Urbana, IL 61803
paul @dfmconsulting.com

interests that will let it choose wisely in its user’s stead.
Thus, our goa is concordance. Whether the agent's
capabilities are large or small, a good agent will make the
same choices its user would make if the user were in the
agent’s shoes. In contrast, an undesirable agent lacks a
sufficient model of its user, and can act in what appears to
be an optimal fashion while making inefficient, surprising,
and even dangerous decisions on its user’ s behalf.

We develop this perspective by adopting the framework for
value alignment (Shapiro 2001), which provides a formal
structure for relating agent reward functions to human
utility, as well as two key theoretical results. The first
guarantees that an aligned agent will maximize human
utility as a consequence of maximizing its own reward (it
will do everything it can for its user that lies within its
skills). The second states that it is always possible to align
any agent with any user. If this process proves practical in
non-trivial domains, the concept of alignment offers a path
towards a new class of uniquely trustworthy agents.

This paper outlines a practica methodology for
establishing user-agent value alignment and for employing
it to drive agent development. In particular, we show how
to create alignment by separately considering the structural
and numerical aspects of the agent’s reward function in
relation to user utility. This process can suggest agent-held
sensors, and clarify the agent’s options for action. Next, we
show how to iteratively improve agent designs. This leads
to several heuristics for predicting the performance of both
aligned and unaligned agents based on an analysis of their
reward functions, without recourse to expensive, behavioral
tests. Finally, we show how to maintain alignment during
operation through user-agent communication, in part by
atering the agent’ s reward function to track changesin user
utility that accrue over extend periods of time.

While this methodology is untested, it offers a novel suite
of tools for designing, implementing, evaluating, and
interacting with autonomous agents that focus on a more
abstract plane. We emphasize a discourse about values
above specific behavior, under the tenet that if agents carry
the user’s concerns at heart, trust necessarily follows.

Designing the 2009 M ars Rover

In order to make the need for alignment clear, we describe
areal application task; the design of the NASA Mars rover
scheduled for launch in 2009. We focus on the difficulties

of the current design process that an alignment-based
methodology can hope to reduce. The following text is
adapted from a joint proposal with Dr. Marcel Schoppers, a
member of the mission flight team.

At its inception, the 2009 Mars Mission was intended to
land in the smooth center of a crater, then drive to the
crater rim to analyze rock samples. The plan caled for
autonomous drives as long as 1 km, while the rover would
need to survive 2 yearsto cover the distance. This required
Radio-isotope Thermal Generators (RTGs) to provide
power during the Martian winter (as the sun is too low on
the horizon for solar panels), and a rover about the size of a
Volkswagen beetle to carry the RTGs. As the mission
evolved, budget constraints downsized the distance
requirements by a factor of 10, to at most 50 meters per
day. At this scale, the rover can be driven entirely from
Earth, eliminating the need for autonomous navigation.
Moreover, the rover's large size means that the mean
hazard-free path will be ~150 meters, so the mission can
afford to react to rock-hazards by causing the rover to fail-
safe (freeze in place). Even software for veering around
rocks is considered a low-probability optional extra. The
rover's remaining mission is to reach, collect, and analyze
approximately 30 rock samples.

Before it was clear how much the mission would have to
shrink, the flight software team began to adapt a prior
hazard-avoidance package by testing it in the most obvious
way: we placed a huge rock directly in front of the rover.
The rover drove straight into the rock. This illuminated
severa problems: the software designers believed such a
situation would never arise; the proximity of the rock
reduced the light level beyond what the vision system could
handle, and it took lack of evidence to mean no danger; and
the terrain-evaluation criteria had malfunctioned so the
rover would not have avoided the rock even if it had been
seen.

In addressing these problems, we replaced the hazard-
detection and hazard-avoidance algorithms. To give
ourselves confidence in the coherence and repeatability of
the rover's behavior, we resorted to an A*-like search
across a graph that is dynamically elaborated by simulating
a set of possible moves. In our case the moves were a set of
rover arcs and turns, and the evaluation function (the A*
path-cost) was cast as the amount of energy each move
would save off the expected energy-cost from "here" to the
goa. We multiply this number by a factor that roughly
corresponds to the probability the rover can safely
complete the move. No move can be selected unless it is
better than terrain-average. We note that this ranking
function looks like an expected utility (although this was
not intentional). The net effect is that the rover either
moves safely towards its goal, with some leeway to drive
around hazards when necessary, or it gives up quickly. We
are now dlightly confident of our software's behavior.

We remain acutely aware of several unresolved issues. (1)
If the terrain is too rough or too sloped, our software won't
know it. (2) Our algorithm relies on some 30 constants,
which we have assigned through a combination of intuition
and experiment. For example, the rover's path-safety
evaluation is limited to a radius of 1.5 meters, flimsily
justified by camera resolution, because arbitrarily-long
paths will always become unsafe, if only by virtue of
uncertainty. (3) We can justify each part of the move
evaluation separately (energy-saved, move-safety) but
cannot defend the product, other than by the maxim, “it
works’. (4) We included no reward for smply seeing new
terrain. Although this might result in a preferred path to
the goal, we don't want randomly exploring rovers and
don't know how to make the resulting tradeoffs.

The current Mars ' 09 rover mission plan eliminates each of
these issues by prohibiting hazard avoidance software from
driving the rover. However, even if the software is limited
to hazard detection/assessment, uncomfortable issues
remain. The system cannot reliably detect rock clefts that
will trap the rover's wheels, or rock configurations that let
the wheels down with the rover's belly suspended. So far,
our attempts to address these issues have produced hazard
detectors that declare their fear so often they cost a
significant fraction of the mission's operating time. In
addition, the tuning required to achieve enough-but-not-
too-much hazard detection cannot be carried out with flight
hardware, and it requires many time-consuming tests to
shrink the sample's standard deviation. In other words,
merely declaring terrain hazardous is risky and expensive.
However, we know of no other way to proceed, besides
retreating to very short-range, completely manual driving.

This description makes it clear that the 2009 rover mission
experiences the problems that value alignment is meant to
address. First, its users are motivated by scientific return,
but routinely sacrifice it by down-scoping the mission.
Their willingness to deploy autonomy is limited by its
perceived risk. Second, the users care about abstractions
like safety and mission return (and are willing to measure
them) while the engineering team struggles to give the
rover the relevant perceptual data. Thus, they are trying to
define and communicate a desired objective function across
a gap in reference frames. Third, the engineering staff is
very concerned with system validation. They want to know
that the rover will behave well on Mars, and to understand
how and why it might fail as an input to incremental design.
They also find behavioral metrics extremely hard to obtain.
Value aignment provides an aternate perspective on each
of these issues.

We will use the Mars rover mission as a source of
examples throughout this paper, and as a vehicle for
illustrating the relevance, and the steps of our proposed
methodology. We begin by introducing alignment theory.

User-Agent Value Alignment

The theory of aignment creates a bridge between the
objectives of a user and those of an autonomous system. It
addresses this question in the context of a decision
theoretic problem frame that represents the user’s concerns
by a utility function, and the agent's by an anaogous
function called its reward. The theory identifies the
conditions necessary to align the agent's reward with
human utility in such a way that the agent is motivated to
address the user’ s concerns.

Figure 1 illustrates the alignment problem via an influence
diagram (Howard & Matheson, 1984). Here, the ovals are
observed attributes, the rectangle identifies decision
options, the arcs represent an influence between two
guantities, and the absence of an arc represents conditional
independence. The task is to align the agent’s reward, R,
with user utility, U, such that the agent's decisions, D
(informed by the observations, 0) maximize user utility.
The task is difficult for two reasons. First, R and U can be
based on different feature sets (denoted x for R, and y for
U), implying that the agent cannot sense the user's
concerns, and cannot necessarily represent U. As aresult,
its decisions can diverge from the ones the user would have
it employ. Second, since the agent’s behavior can impact
utility via multiple pathways over time, the agent can
adversely (and inadvertently) affect the user’s utility in the
process of pursuing its own goals.

The example in Figure 1 represents a lack of alignment.
Here, we assume that the rover faces a decision to stop
rather than navigate around the obstacle, where that choice
has consequences for the user. In particular, if it stopsin a
communication shadow, the mission will fail. Unless the
rover detects this condition (or an analog for it) and
employs it to rank its action options, it cannot address the
user’s concern. From the rover’s perspective, Stop will be
its optimal action, yet it will have severe (if unintended)
consequences for the user.

In order to establish alignment, we need to ensure that the
agent is motivated by the user's concerns, and that its

actions will not impact the user in adverse ways. The
theory addresses these issues in two parts. The first defines

Obstacle ahead

Figurel. Ajoint user-agent problem frame.

a conditional independence relationship between the agent
and user problem frames called structural alignment. Inits
presence, the agent can recognize all ways its actions affect
user utility. Next, given structural alignment, we perform a
numerical manipulation of agent reward to ensure
functional alignment; a situation in which the agent always
selects an action its user would have preferred.

Figure 2 illustrates structural alignment. This diagram
indicates that the agent’s action can only affect user utility
via features that matter to the agent. In order to create this
condition, we have introduced a surrogate for the user's
concern with safety into the rover’s reward function. Here
we assume that the rover needs to know its orientation in
order to be able to locate, and then communicate with
earth. Given this modification, the consequences of the
rover's choice to Stop are visible in its knowledge of
orientation, which in turn influences the user’s assessment
of safety, and thus mission success. Said differently, the
user’s utility is conditionally independent of the rover's
decisons and observations, given knowledge of its
orientation. Equivalently, the user’s utility is caused by
the rover’s orientation, with respect to the agent’ s decisions
(Heckerman & Shachter, 1995).

If all interaction between the agent and the user passes
through the agent’s reward, we can motivate the agent to
address user concerns. In particular, we can choose the
agent’s reward function so that the policy that produces its
highest expected reward stream also produces the highest
possible expected utility for the user. This condition
defines functional alignment. Intuitively, we can produce
functional aignment by setting the agent’s reward for a
given feature set equal to the expected utility for the user’s
corresponding observations, as this will cause the agent to
increase expected utility whenever it increases reward.

The key theorem of value alignment states that structural
alignment holds if and only if functional alignment can be
satisfied. As a result, we must have the conditional
independence relationship of Figure 2 if the agent is to act
optimally for the user. This makes structural alignment a
key target of design, and the centerpiece of avalue-oriented

design methodology.

Figure2. An example of structural value alignment.

Surprisingly, we can aways establish structural, and
therefore functional alignment between any agent and any
user. While the process may be computationally complex
(see below) it is important to notice that the relationship
between the agent and the user can still be quite broad. The
user can care about features outside the agent’s ken (e.g.,
the geology of Mars rocks), and the agent can care about
features that are irrelevant to the user. However, anything
the user cares about that the agent can observe or affect
must be visible in the agent’ s reward.

Using Alignment in Agent Design

We believe that user-agent value aignment can be
employed as a principle to guide agent development. We
elaborate on this theme by discussing each step of a
proposed methodology, beginning with techniques for
establishing alignment at design time, then iteratively
improving an implementation, and finally maintaining
alignment during agent operation.

Creating alignment

The most direct path for creating alignment follows the
outline of the theory; we construct an agent-held reward
function that establishes structural alignment, and then tune
its free parameters to achieve functional alignment. We
treat this process as an exercise in decision analysis, abeit
it novel one. Here the goa is to refine user utility,
expressed as a collection of preferences over a hierarchy of
attributes that carry value (Keeney and Raiffa, 1976), until
the terms obviously connect to the agent’s problem frame.
At the same time, we examine the existing agent design to
see how it can inadvertently impact utility. This interplay
drives changes to the agent’s sensors, actions, and reward
function, eventually producing a joint problem frame
(expressed in terms of x, y, o, D, R, and U) that exhibits
structural alignment. Given structural alignment, we
employ several assessment techniques to produce
functional alignment.

We have aready illustrated an approach to structura
alignment that reasons from agent design towards utility.
This occurred in the transformation between Figures 1 and
2, when we recognized that the agent’s decision to Stop
could inadvertently sever communication; an element of y
that carries indirect value to the user via its impact on
safety. The fix was to introduce an orientation sensor into
X, S0 that the agent could be aware of, and motivated to
address this concern. This line of reasoning can aso
suggest new agent actions. For example, we can avert the
unintentional effect of Stop on communication by defining
arecovery action that physically searches for earth.

We can aso refine user utility until it suggests new agent
sensors and actuators. For example, the user’s interest in
scientific return implies a utility for accurate locomotion so
that the rover can efficiently reach interesting sites. This,
in turn, suggests a role for landmark recognition software

(a new virtual sensor), a means of steering relative to
landmarks (a new action), and precison motors (new
hardware) that will let the rover represent and address the
user's desire. This line of reasoning is similar to the
process of refining specifications.

A third method of creating structural alignment applies in
general, and only requires minimal changes to the agent’s
design. Here, we simply include as many of the agent’s
actions and observations in its reward function as required.
In the limit, this produces structural alignment through a
degenerate path, since the agent’s reward function will
contain its entire problem frame (so the agent can only
affect user utility through features it cares about as well.)
Thus, we can always produce structural alignment between
any agent and any user. However, this approach grows the
agent’s feature base and substantively complicates the task
of producing functional alignment, as discussed below.

Note that we can detect the presence of structural alignment
by asking subjective assessment questions. These all have
asimilar form: if you knew the agent was at a particular tilt,
orientation, and location, would you care what it just did?
If the user is indifferent to such new information, the agent
can only affect U via x, and structural alignment holds.
Said more formally, these questions determine if p(y[x) =
p(y[x,D,0) for al D, and o, satisfying the definition of
structural alignment.

While the task of producing structural alignment involves
an element of art, our approach to functional alignment has
amore mechanical nature. It involves three steps:

1. model user utility, U(y),

2. assess the relation between user and agent
problem frames, p(y|x), and

3. equate agent reward to expected utility, by setting
R(x) = EU(y[x) = Sc U(y) p(Y[x)

We have found that utility models have natural structure
(Collopy 1999, 2001) driven primarily by microeconomic
theory, which imposes constraints that insure transitivity
and completeness in the ordering of aternatives in a
specific domain. In the case of the rover, the user might
place direct value on attributes for the rate of acquiring
scientific data, mission risk, and power consumption, which
can be decomposed into more detailed, measurable
attributes (of indirect value). The supervening functional
structure typically includes hyperbolic and logistic
relationships, which satisfy constraints on the properties of
utility functions (e.g., monotonicity, convexity, and the
delta property in risk preference). Given this framework,
we might have to assess ten parameters to fit a value model
with a dozen attributes, verses the much larger number
required by flat regression models. This simplification
dramatically improves the practicality of the process, and
generates structured models that tend to be transparent and
easy to understand.

We suggest several methods for constructing p(y|x). The
first seeks deterministic relations, where some y;= g(x).
For example, if the user and rover place value on the
distance the rover will travel to reach the next waypoint,
their estimates might have a fixed relation. Second, we can
seek probabilistic relations with an analytic flavor, where
p(yi) = g(x). For example, assume the user cares about
mission risk, while the rover cares about tilt, measured as a
derivate of altitude across grid cells. This derivative is
plausibly connected to mission risk by a fixed, but
probabilistic relation. Next, we can drive the attributesin y
closer to x by further decomposing U, and thus simplifying
the needed relation. Finaly, we can resort to assessment
techniques. For example, we can place the agent in a test
domain such that it perceives the features of interest, x, and
simultaneously ask the user to record higher relevant
perceptions, y. Repeated trials of this form will generate
the desired distribution. In principle, we can automate this
process by instrumenting a simulation to detect y, and
recording data from multiple runs’. This task is simpler
than communicating y to the agent, as it only concerns
virtual sensors.

The final step of equating reward to expected utility is a
problem in function fitting. Here, we are given x, EU(y|x),
and seek a functional form for R(x), plus settings for its
free parameters (generally interpreted as relative weights)
that most closely approximate the target values. If we posit
aconvex R, many gradient descent techniques apply.

Iterative improvement

We can use the concept of alignment to iteratively improve
agent designs. The theory currently provides two simple
lemmas (Shapiro, 2002) that can be used to rank agents,
where a more capable agent can make a superset of the
same observations and decisions. They are (1) a
functionally aligned agent is weakly preferred to an equally
capable unaligned agent, and (2) a functionally aligned
agent is weakly preferred to a less capable, functionally
aligned agent. The latter implies that you should aways
employ a more skilled individual who has your interests at
heart. We believe we can extend the reach of these
theorems to include more common cases. |In particular,
given two equally capable agents, we conjecture that the
user should always prefer the one that (a) has a better hold
on the truth (i.e., that has more reliable sensors), and (b)
that possesses a more accurate perception of the user's
expected utility (after accumulating sensor uncertainties
into the reward function). This line of reasoning begins to
transform the fundamentally structural theory of alignment
into a more quantitative realm.

In addition to ranking lemmas, we believe we can create a
more general capability for predicting (and evaluating) the
performance of aligned and unaligned agents in numeric

! We can also record p(y[x,D,0) and detect structural alignment.

terms. This leads to several unabashed heuristics that
predict utility without data from behaviora trajectories.
Here we assume a probability distribution for p(x), the
states the agent will encounter in its domain, plus access to
p(y[x) as before. Next, we consider three metrics:

1 Sp(x) R(x)

2. ScEU(YIX) p(x)

3. Scp(x) (EU(y) —R(x))*
The first calculates the expected reward for an agent’'s
action in the domain, the second predicts the expected
quality on a scale native to users, and the third calculates an
error between user and agent perceptions of value. Each
can be used to rank the behavior of alternate designs, and

to identify regions of the attribute space where the agents
most differ. Thisfocuses attention in iterative design.

In actuality, of course, R(x) generates p(x) as the agent acts
in its domain, so it is an act of will to assume a single
distribution. However, these comparisons may make sense
when contemplating sufficiently small design changes. In
addition, we note that at least one software developer on
the 2009 Mars rover project believes trajectory generation
is prohibitively expensive, and he is quite willing to
contemplate heuristics of this magnitude.

Maintaining alignment during operation

The concept of alignment can also play an active part in
operational control. We have identified two main roles.
The first follows from the realization that the user can
supply some of the percepts required to establish alignment
at run-time. For example, the rover is currently unable to
detect some depth hazards (potholes) from binocular
imagery. Rather than invest the time and energy to invent
(and flight-certify) a special sensor, the user can simply tell
the rover where such hazards exist, after viewing the same
imagery. Although this data will be incomplete, the rover
can rely on it where present, and otherwise employ a prior
likelihood in its reward function. Assuming our
conjectures regarding imperfect sensors hold, the rover will
remain aligned in both cases and act to maximize human
utility. It will just be more capable given better data.

We can also employ the concept of alignment to support
extended operation. Here the goal is to accommodate
changes in user interests by incrementally adjusting agent
reward. This situation is not uncommon. For example, as
the Pathfinder mission logged more successes, Sojourner’s
operators considered increasingly ambitious science goals
at some risk to rover safety (e.g., by allowing higher levels
of tilt and sensor noise). This concept was actualy
encoded in the operational plan as an alowable “risk
level”. In principle, we can model this shift in risk
tolerance as an exogenous change to U, and derive an
adjustment to R that preserves functional alignment.

This results in a novel and principled way to control the
rover during operation, which may be more flexible than
current techniques. Instead of uploading a new action plan,
we employ the rover's reward function as a control
interface. As long as it remains aligned, the rover will
make the best choices for us that it possibly can, even over
prolonged periods of autonomous operation.

Discussion

The key idea in this paper is that a discourse over values
can motivate agent design. As such, our goa has been to
clarify a simple guiding principle for a complex enterprise:
since agents make decisions for people, they should carry
their user’s values at heart.

The concept of value alignment to embodies this principle.
However, its use raises a new issue, namely the need to
bridge reference frames. This problem is endemic to all
acts of delegation, but it is rarely addressed in explicit
form. While principal-agent theory (Jensen and Meckling,
1976) employs monetary incentives to align the concerns of
multiple (and generally non-cooperative) actors, the closest
work with a methodological flavor comes from a very few
authors in computer science. Wolpert, New, and Bell
(1999) construct agent-held utility functions, but
manipulate them as a vehicle for coordinating multiple
agents, while Schoppers and Shapiro (1997) build an
explicit, probabilistic relation between user and agent-held
perceptions of state, and employ it to support design. They
ascend the gradient of user utility with respect to decisions
deep within their agent model.

Our work elaborates on these themes by employing value
models to motivate many aspects of agent design. While
our technical approach emphasizes the novel application of
mostly mundane techniques (utility modeling, assessment
and simulation), our methodology inherits one of the main
benefits of decision analysis; the process itself increases
clarity. We expect that users will learn a great deal about
their own utility in the attempt to establish alignment.

We have shown that alignment is a highly desirable design
objective, because it perfectly motivates agents to serve
their users. However, we have deliberately ignored the
question of how the agent optimizes R, and thus user
utility, since our focus has been on values, not policies.
Here, we note only that the benefits of alignment flow to
any behavior generation technique that optimizes an
objective, which is an extremely broad class of methods.

The key question, of course, is whether alignment is
feasible in practice. As a form of constructive proof, we
have offered a design methodology and suggested specific
techniques to address each component problem. However,
other solutions are also possible. For example, instead of
working through p(y[x), we can align R(x) directly with
U(y) via a supervised learning method that employs

numeric user feedback (or feedback about preferred
action). Regardless of the approach, we note one caution: it
will become more difficult to establish alignment as agent
capabilities grow, because such systems can affect user
utility in additional ways. That is, smarter agents are
inherently harder to trust. .

In summary, we believe it is desirable and feasible to cast
alignment as a design principle and place it at the core of a
value-driven development methodology. We have shown
that this approach can clarify early agent design, guide
iterative improvement, and structure run-time interactions.
More broadly, this strategy answers a yearning for an
abstract appreciation of the agent design task that makes
the specific implementation technology less central than the
guiding intent: to supply value.

References

Collopy, Paul D. (1999). Joint Strike Fighter: Optimal
Design through Contract Incentives. Pages 335-346 in
1999 Acquisition Reform Symposium Proceedings,
Defense Systems Management College.

Collopy, Paul D. (2001). Economic-Based Distributed
Optimal Design, AIAA 2001-4675. American Ingtitute of
Aeronautics and Astronautics, Reston, VA.

Heckerman, D., & Shachter, R. (1995). Decision-theoretic
foundations for causal reasoning. Journal of Artificial
Intelligence Research, 3, 405-430.

Howard, R., & Matheson, J. (1984). Readings on the
principles and applications of decision analysis. Strategic
Decisions Group, Menlo Park, CA.

Jensen, Michael and Meckling, William. “Theory of the
Firm: Managerial Behavior, Agency Costs, and
Ownership Structure”. Pages 305-360 in The Journa of
Financial Economics, Vol. 3, 1976.

Keeney, Raph L., and Raiffa, Howard. Decisions with
Multiple Objectives. John Wiley & Sons, New York,
1976.

Schoppers, M., & Shapiro, D. (1997). Designing embedded
agents to optimize end-user objectives. Proceedings of
the Fourth International Workshop on Agent Theories,
Architectures and Languages. Providence, RI.

Shapiro, D, and Shachter, R. (2002). User-agent value
aignment. Stanford Spring Symposium, Workshop on
Safe Learning Agents.

Shapiro, D. (2001). Value-driven agents. PhD thesis,
Department of Management Science and Engineering,
Stanford University, Stanford, CA.

Wolpert, D., New, M., & Bdl, A. (1999). Distorting
reward functions to improve reinforcement learning.
Tech. Report 1C-99-71, NASA Ames Research Center,
Mountain View, CA.

