George, D., Saito, K., Langley, P., Bay, S., & Arrigo, K. (2003).
Discovering ecosystem models from time-series data.
Proceedings of the Sixth International Conference on Discovery
Science (pp. 141-152). Saporro, Japan: Springer.
Saito, K., George, D., Bay, S., & Shrager, J. (2003). Inducing biological
models from temporal gene expression data. Proceedings of the Sixth
International Conference on Discovery Systems. Sapporo, Japan.
Bay, S. D., & Schwabacher, M. (2003). Mining distance-based outliers
in near linear time with randomization and a simple pruning rule.
Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.
PDF.
Postscript.
Langley, P., George, D., Bay, S., & Saito, K. (2003).
Robust induction of process models from time-series data.
Proceedings of the Twentieth International Conference on
Machine Learning (pp. 432-439).
Bay, S. D., Chrisman, L., Pohorille, A., & Shrager, J. (2003).
Temporal aggregation bias and inference of causal regulatory networks.
Proceedings of the IJCAI-2003 Workshop on Learning Graphical Models
for Computational Genomics.
Postscript.
PDF.
Todorovski, L., Dzeroski, S., Langley, P., & Potter, C. (in press).
Using equation discovery to revise an Earth ecosystem model of carbon
net production. Ecological Modeling.
Maloof, M. A., Langley, P., Binford, T. O., Nevatia, R., & Sage, S. (2003).
Improved rooftop detection in aerial images with machine learning.
Machine Learning, 53, 157-191.
Bay, S. D., Shrager, J., Pohorille, A., & Langley, P. (2003).
Revising regulatory networks: From expression data to linear causal
models. Journal of Biomedical Informatics, 35, 289-297.
Langley, P., Shapiro, D., Aycinena, M., & Siliski, M. (2003).
A value-driven architecture for intelligent behavior.
Proceedings of the IJCAI-2003 Workshop on Cognitive Modeling of
Agents and Multi-Agent Interactions (pp. 10-18). Acapulco, Mexico.
Yoo, J., Gervasio, M., & Langley, P. (2003).
An adaptive stock tracker for personalized trading advice.
Proceedings of the International Conference on Intelligent User
Interfaces (pp. 197-203). Miami, Florida.
Chrisman, L., Langley, P., Bay, S., & Pohorille, A. (2003).
Incorporating biological knowledge into evaluation of causal
regulatory hypotheses.
Proceedings of the Pacific Symposium on Biocomputing (pp. 128-139).
Lihue, Hawaii.
2002
Langley, P., & Laird, J. E. (2002).
Cognitive architectures: Research issues and challenges
(Technical Report). Institute for the Study of Learning and Expertise,
Palo Alto, CA.
Saito, K., Bay, S., & Langley, P. (2002).
Revising qualitative models of gene regulation (pp. 59-70).
Proceedings of the Fifth International Conference on Discovery
Science.
Langley, P. (2002).
Lessons for the computational discovery of scientific knowledge.
Proceedings of First International Workshop on Data Mining Lessons
Learned (pp. 9-12). Sydney.
Bay, S. D., Shapiro, D. G., & Langley, P. (2002).
Revising engineering models: Combining computational discovery with
knowledge. Proceedings of the Thirteenth European Conference
on Machine Learning (pp. 10-22). Helsinki, Finland.
Ichise, R., Shapiro, D. G., & Langley, P. (2002).
Learning hierarchical skills from observation (pp. 247-258).
Proceedings of the Fifth International Conference on Discovery
Science.
Langley, P., Sanchez, J., Todorovski, L., & Dzeroski, S. (2002).
Inducing process models from continuous data. Proceedings of
the Nineteenth International Conference on Machine Learning
(pp. 347-354). Sydney: Morgan Kaufmann.
Shapiro, D., & Langley, P. (2002).
Separating skills from preference: Using learning to program by reward.
Proceedings of the Nineteenth International Conference on Machine
Learning (pp. 570-577). Sydney: Morgan Kaufmann.
Langley, P., Shrager, J., & Saito, K. (2002).
Computational discovery of communicable scientific knowledge.
In L. Magnani, N. J. Nersessian, & C. Pizzi (Eds.),
Logical and Computational Aspects of Model-Based Reasoning.
Dordrecht: Kluwer Academic.
Shrager, J., Langley, P., & Pohorille, A. (2002).
Guiding revision of regulatory models with expression data.
Proceedings of the Pacific Symposium on Biocomputing
(pp. 486-497). Lihue, Hawaii.
2001
Saito, K., Langley, P., Grenager, T., Potter, C., Torregrosa, A., &
Klooster, S. A. (2001).
Computational revision of quantitative scientific models.
Proceedings of the Fourth International Conference on Discovery
Science (pp. 336-349). Washington, D.C.: Springer.
Kocabas, S., & Langley, P. (2001).
An integrated framework for extended discovery in particle physics.
Proceedings of the Fourth International Conference on Discovery
Science (pp. 182-195). Washington, D.C.: Springer.
Dzeroski, S., & Langley, P. (2001).
Computational discovery of communicable knowledge: Symposium report.
Proceedings of the Fourth International Conference on Discovery
Science (pp. 45-49). Washington, D.C.: Springer.
Kalton, A., Langley, P., Wagstaff, K., & Yoo, J. (2001).
Generalized clustering, supervised learning, and data assignment.
Proceedings of the Seventh International Conference on Knowledge
Discovery and Data Mining (pp. 299-304). San Francisco: ACM Press.
Iba, W., & Langley, P. (2001).
Unsupervised learning of probabilistic concept hierarchies.
In G. Paliouras, V. Karkaletsis, & C. D. Spyropoulos (Eds).,
Machine learning and its applications. Berlin: Springer.
Langley, P., Magnani, L., Cheng, P. C.-H., Gordon, A., Kocabas, S., &
Sleeman, D. H. (2001).
Computational models of historical scientific discoveries.
Proceedings of the Twenty-Third Annual Conference of the Cognitive
Science Society (p. 3). Edinburgh: Lawrence Erlbaum.
Schwabacher, M., & Langley, P. (2001).
Discovering communicable scientific knowledge from spatio-temporal data.
Proceedings of the Eighteenth International Conference on Machine
Learning (pp. 489-496). Williamstown, MA: Morgan Kaufmann.
Shapiro, D., Langley, P., & Shachter, R. (2001).
Using background knowledge to speed reinforcement learning in physical
agents.
Proceedings of the Fifth International Conference on Autonomous
Agents (pp. 254-261). Montreal: ACM Press.
2000
Kocabas, S., & Langley, P. (2000).
Computer generation of process explanations in nuclear astrophysics.
International Journal of Human-Computer Studies, 53,
377-392.
1999
Iba, W., & Langley, P. (1999).
Unsupervised learning of probabilistic concept hierarchies
(Technical Report 99-1). Institute for the Study of Learning and
Expertise, Palo Alto, CA.
Langley, P. (1999).
Concrete and abstract models of category learning.
Proceedings of the Twenty-First Annual Conference of the Cognitive
Science Society (pp. 288-293). Vancouver, BC: Lawrence Erlbaum.
Gervasio, M. T., Iba, W., & Langley, P. (1999).
Learning user evaluation functions for adaptive scheduling assistance.
Proceedings of the Sixteenth International Conference on Machine
Learning (pp. 152-161). Bled, Slovenia: Morgan Kaufmann.
Langley, P., & Sage, S. (1999).
Tractable average-case analysis of naive Bayesian classifiers.
Proceedings of the Sixteenth International Conference on Machine
Learning (pp. 220-228). Bled, Slovenia: Morgan Kaufmann.
Iba, W., & Gervasio, M. (1999).
Adapting to user preferences in crisis response.
Proceedings of the 1999 International Conference on Intelligent
User Interfaces. Redondo Beach, CA.
1998
Langley, P., & Fehling, M. (1998).
The experimental study of adaptive user interfaces (Technical Report
98-3). Institute for the Study of Learning and Expertise, Palo Alto, CA.
Ali, K. M., Langley, P., Maloof, M. A., Binford, T. O., & Sage, S.
(1998).
Improving rooftop detection with interactive visual learning.
Proceedings of the Image Understanding Workshop.
Monterrey, CA: Morgan Kaufmann.
Kocabas, S., & Langley, P. (1998).
Generating process explanations in nuclear astrophysics.
Proceedings of the ECAI-98 Workshop on Machine Discovery
(pp. 4-9). Brighton, UK.
Maloof, M. A., Langley, P., Binford, T. O., & Nevatia, R. (1998).
Generalizing over aspect and location for rooftop detection.
Proceedings of the Fourth IEEE Workshop on Applications of Computer
Vision. Princeton, NJ: IEEE Press.
Iba, W., Gervasio, M., Langley, P., & Sage, S. (1998).
Evaluating computational assistance for crisis response.
Proceedings of the Twentieth Annual Conference of the Cognitive
Science Society (pp. 514-519). Madison, WI: Lawrence Erlbaum.
Gervasio, M., Iba, W., & Langley, P. (1998).
Learning to predict user operations for adaptive scheduling.
Proceedings of the Fifteenth National Conference on Artificial
Intelligence (pp. 721-726). Madison, WI: AAAI Press.
Yamauchi, B., Langley, P., Schultz, A. C., Grefenstette, J., &
Adams, W. (1998).
Magellan: An integrated adaptive architecture for mobile robotics
(Technical Report 98-2). Institute for the Study of Learning and
Expertise, Palo Alto, CA.
Gervasio, M., Iba, W., & Langley, P. (1998).
Case-based seeding for an interactive crisis response assistant.
Proceedings of the AAAI-98 Workshop on Case-Based Reasoning Integrations.
Madison, WI.
Maloof, M. A., Langley, P., Binford, T., & Sage, S. (1998).
Improving rooftop detection in aerial images through machine learning
(Technical Report 98-1). Institute for the Study of Learning and
Expertise, Palo Alto, CA.
Gervasio, M., Iba, W., & Langley, P. (1998).
Learning to predict user operations for adaptive scheduling.
Proceedings of the Fifteenth National Conference on Artificial
Intelligence (pp. 721-726). Madison, WI: AAAI Press.
Gervasio, M., Iba, W., Langley, P., & Sage, S. (1998).
Interactive adaptation for crisis response.
Proceedings of the AIPS-98 Workshop on Interactive and Collaborative
Planning (pp. 29-36). Pittsburgh, PA.
1997
Blum, A., & Langley, P. (1997).
Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97, 245-271.
Maloof, M. A., Langley, P., Sage, S., & Binford, T. (1997).
Learning to detect rooftops in aerial images.
Proceedings of the 1997 Image Understanding Workshop (pp. 835-845).
New Orleans: Morgan Kaufmann.
Yamauchi, B., & Langley, P. (1997).
Place recognition in dynamic environments.
Journal of Robotic Systems, 14, 107-120.
Kohavi, R., Langley, P., & Yun, Y. (1997).
The utility of feature weighting in nearest-neighbor algorithms.
Proceedings of the Ninth European Conference on Machine Learning.
Prague: Springer-Verlag.
Langley, P. (1997).
Learning to sense selectively in physical domains.
Proceedings of the First International Conference on Autonomous Agents
(pp. 217-226). Marina del Rey, CA: ACM Press.
Langley, P., Pfleger, K., & Sahami, M. (1997).
Lazy acquisition of place knowledge.
Artificial Intelligence Review, 11, 315-342.
Langley, P., & Sage, S. (1997).
Scaling to domains with irrelevant features.
In R. Greiner (Ed.), Computational learning theory and natural
learning systems (Vol. 4). Cambridge, MA: MIT Press.
1996
Yamauchi, B., & Langley, P. (1996).
Place learning in dynamic real-world environments.
Proceedings of RoboLearn-96: International Workshop for Learning
in Autonomous Robots (pp. 123-129). Key West, FL.
Provan, G., Langley, P., & Binford, T.O. (1996).
Probabilistic learning of three-dimensional object models.
Proceedings of the Image Understanding Workshop (pp. 1403-1413).
Palm Springs, CA: Morgan Kaufmann.
Langley, P. (October, 1996).
Relevance and insight in experimental studies.
IEEE Expert, 11-12.
1995
Langley, P. (1995).
Order effects in incremental learning.
In P. Reimann & H. Spada (Eds.), Learning in humans and machines:
Towards an interdisciplinary learning science. Oxford: Elsevier.
Langley, P., & Pfleger, K. (1995).
Case-based acquisition of place knowledge.
Proceedings of the Twelfth International Conference on Machine Learning
(pp. 244-352). Lake Tahoe, CA: Morgan Kaufmann.
1994
Langley, P. (1994).
Selection of relevant features in machine learning.
Proceedings of the AAAI Fall Symposium on Relevance. New Orleans:
AAAI Press.
Langley, P., Binford, T. O., & Levitt, T. S. (1994).
Learning object models from visual observation and background
knowledge. Proceedings of the Image Understanding Workshop.
Monterrey, CA.
Bowyer, K. W., Hall, L. O., Langley, P., Bhanu, B., & Draper, B. A.
(1994).
Report of the AAAI fall symposium on machine learning and computer
vision: What, why and how.
Proceedings of the Image Understanding Workshop. Monterrey, CA.
Langley, P., & Sage, S. (1994).
Induction of selective Bayesian classifiers.
Proceedings of the Tenth Conference on Uncertainty in Artificial
Intelligence (pp. 399-406). Seattle, WA: Morgan Kaufmann.
Langley, P., & Sage, S. (1994).
Oblivious decision trees and abstract cases.
Working Notes of the AAAI94 Workshop on Case-Based Reasoning
(pp. 113-117). Seattle, WA: AAAI Press.
Langley, P., Iba, W., & Shrager, J. (1994).
Reactive and automatic behavior in plan execution.
Proceedings of the Second International Conference on AI Planning
Systems (pp. 299-304). Chicago: AAAI Press.
For more information, send electronic mail to
langley@isle.org