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Abstract

In this paper we present an average-case analysis of the naive Bayesian clas-
sifier, a simple induction algorithm that performs well in many domains. Our
analysis assumes a monotone ‘M of N’ target concept and training data that
consists of independent Boolean attributes. The analysis supposes a known
target concept and distribution of instances, but includes parameters for the
number of training cases, the number of irrelevant, relevant, and necessary at-
tributes, the probability of each attribute, and the amount of class noise. Our
approach differs from previous average-case analyses by introducing approxi-
mations to achieve computational tractability. This lets us explore the behav-
ioral implications of the model for larger training and attribute sets than the
earlier exact analyses, and experimental studies show that the analysis makes
very accurate predictions despite its use of approximations. In closing, we
suggest promising directions for future research on the average-case analysis
of induction.
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1. Introduction and Motivation

Most theoretical analyses of machine learning focus on worst-case results, in-
cluding those in the ‘probably approximately correct’ framework (Haussler,
1990). Although this lets analysts obtain quite general, distribution-free re-
sults, it also means their predictions of learning rate are much slower than
those observed in practice. As a result, the link between theory and experi-
ment in machine learning has become tenuous.

An alternative approach involves the average-case analysis of specific induc-
tion algorithms on domains with known characteristics. Pazzani and Sarrett
(1992) report early results of this sort for a conjunctive learning method, and
similar studies have been done for decision stumps (Iba & Langley, 1992), the
naive Bayesian classifier (Langley, Iba, & Thompson, 1992), 1-nearest neighbor
(Langley & Tba, 1992), and k-nearest neighbor (Okamoto & Nobuhiro, 1997).
Each analysis produced predictions about the effect of domain characteristics,
averaged over different training sets, that fit experimental data very closely.

However, this theoretical accuracy came with a price. For even simple meth-
ods like naive Bayes and nearest neighbor, the calculations needed to predict
behavior could take drastically longer than actually running experiments with
synthetic data, even when the latter averaged over many training sets. The
difficulty resulted from the analyses’ reliance on the exact calculation of prob-
abilities for all possible combinations of events. For many induction methods,
the number of such events grows exponentially with the number of attributes
and size of the training set. This meant that theoretical predictions were only
possible for small domains and early parts of the learning curve.

In this paper, we present a more tractable approach to the average-case
analysis of induction algorithms. We demonstrate the framework with a new
treatment of the naive Bayesian classifier, both because of the growing interest
with this simple yet powerful method (e.g., Domingos & Pazzani, 1997) and
because our earlier analysis was especially problematic in computational terms.
The new analysis uses many of the same techniques as the previous one, but
it introduces approximations based on the normal distribution that let us
calculate means and variances for the sums and differences of quantities, rather
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than about the probabilities of their explicit combinations.! The result is a
tractable average-case analysis of naive Bayes that, as experimental studies
reveal, remains accurate despite its use of approximations.

2. Review of the Naive Bayesian Classifier

Although it has a long history in pattern recognition (Duda & Hart, 1973),
the naive Bayesian classifier first appeared in the machine learning literature
as a straw man against which to compare more sophisticated methods (e.g.,
Cestnik, Konenenko, & Bratko, 1987). Only gradually did researchers become
aware of its potential, but now it is widely recognized as a viable and robust
approach to supervised induction.

Before beginning the analysis, we should first review the manner in which
naive Bayes operates. To classify a new instance I, which is simply a conjunc-
tion of attribute values, the method calculates the probability of each class
given the instance using

PICIT) = PC)PUIC) _ P(Ci) Haus P(v;]Ci)
P(]) chasses P(C’C) Hatts P(U]‘Ck) 7
where P(C;) is the probability of class C; and P(v;|C;) is the conditional prob-
ability for each attribute value v; given the class C;. The product of conditional

probabilities comes from the assumption that attributes are independent given
the class, which greatly simplifies the computation of the class scores and eases
the induction process. After calculating P(C;|I) for each class, the algorithm
assigns the instance to the class with the highest overall score or probability.

Although the above formulation of naive Bayes is the traditional one, we
can express the score for each class in another form that is more tractable
for analytical purposes. The basic idea is that, if we are concerned only with
predictive accuracy, we can invoke any monotonic transformation that does not
affect the ordering on class scores. One such transformation involves removing

1. Golea and Marchand (1993) report an average-case analysis of perceptron learning that
also incorporates normal approximations, but their work includes other ideas from sta-
tistical mechanics that make it inaccessible to the machine learning community.
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the denominator, which is the same for each class, and another involves taking
the logarithm of the numerator. Together, these produce a new score

Sc = logP(C) + Y logP(v;|C) .
atts
In fact, this form is often used in practice, since it is efficient to calculate
and reduces round-off errors due to small fractions. The new score S¢ is no
longer a probability, but is quite sufficient if one only wants to predict the
most probable class.

We should also discuss the estimation of probabilities in this expression.
The typical implementation of naive Bayes stores an overall count n, one count
ke for each class, and one count ¢; for each attribute value given the class.
During training, the induction algorithm increments the overall count on each
training instance, increments the class count for each example of that class,
and increments the class-specific count for each attribute value that appears in
the instance. During performance, the classifier uses these counts to estimate
probabilities, giving

Sc = log (k—c> + Zlog <i> .
n atts ke
However, if the algorithm has not encountered a particular class or an attribute
value for some class during learning, a slight problem arises because a count is
zero. A common response is to initialize counts to 1 for each value, which we
will also assume in our analysis. Moreover, since we assume Boolean attributes,
we will set the initial count for each class to 2, and since we assume two classes,
we will use 4 as the initial total count. This results in prior probabilities of %
for both classes and for each value given a class.

These decisions about how to initialize counts require a slight revision of
the score for each class. Moreover, our assumption that attributes are Boolean
lets us store only one count ¢; for each attribute, for when it is present in an
instance (i.e., has value TRUE). When the attribute is absent from an instance
(i.e., has value FALSE), we can simply use k¢ — ¢; as the count. We can reflect
this in the score by separating the contribution for features that are present
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and absent, giving

ke —cj+1
S = lo +3 1o ( ) 4 S o (e G R
o = log ( ) %: g Z 0g k )
We can also remove the denominator n + 4 in the first term, since this is the
same for both classes. We will use this modified form of the class score in our
average-case analysis of naive Bayes.

3. Analysis of Classification Accuracy

We will assume that the target concept C' is a monotone function of r rele-
vant Boolean attributes that returns TRUE if ¢ or more of these r attributes
are present and returns FALSE otherwise. Thus, for a ‘3 of 5" concept, any
instance that has three, four, or five features present is a positive example of
the concept. We further suppose that there are i irrelevant Boolean attributes
that play no role in the target concept, giving r + 7 total Boolean features,
each of which occurs with probability P(A). We also assume that attributes
are independent of each other. For now, we also assume that both training
and test data are noise free, though we will return to this issue later.

Given this information, we want to predict the probability A(n) of classifying
a test case correctly after naive Bayes has seen n training instances. We can
partition this accuracy measure into two components, one dealing with positive
test cases and the other with negative test cases. Both terms involve summing
over different types of test cases that differ in the number j out of ¢ irrelevant
attributes that are present and in the number s out of r relevant attributes
that are present. This gives us

7 r i qg—1
=3 3T AL () + 3D T A ()
§j=0s=q §j=05=0

where T is the probability of encountering a test case with exactly j out
of 7 irrelevant attributes and exactly s out of r relevant attributes, A (n)
is the probability of correctly classifying such a test case, and A; (n) is the
analogous term for a negative case.
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Let us first consider the probability of encountering a given type of test
case. Because each attribute occurs independently with probability P(A), the
number of irrelevant attributes j that appear in a test case follows a binomial
distribution with probability of success P(A), as does the number of relevant
attributes s that it contains. Taken together, this gives

.= () parn - pap(]

,7 S)P(A)S[l — P(A)

Intuitively, this holds because the two probabilities are independent, with the

former occurring in (;) different ways and the latter occurring in (Z) ways.

Now we can focus on the predictive accuracy AJ,(n) for a positive test
case in which j irrelevants and s relevants are present. For this, we must
average over the various concept descriptions that naive Bayes will acquire
from different training sets. We can decompose the accuracies after n training
cases into weighted sums of accuracies A7 (k) and A; (k) for different numbers
of positive instances, giving

n n

Afy(n) = Y Pley = WAL (R)  and  Aj(n) = 3 Ple, = k), (k) |
k=0 k=0
where P(c; = k) is the probability that exactly k out of n training instances
are positive. Since each training case is independent of the others, the number
k follows a binomial distribution, so that we have

n

Pley =k) = (k)P(C)k[l — PO,

where P(C') is the probability that any given instance will be positive.

Let us turn to the accuracy on a positive test cast with j irrelevant attributes
and s relevant attributes present, given that naive Bayes has observed £ out of
n positive training cases. Recall that for each test case, the Bayesian classifier
produces a score for the positive class, which we will call §, and a score for
the negative class, which we will call S. For a positive test case, the expected
accuracy is precisely the probability that S > S. We can restate this relation
by defining the difference between these two scores d = S — S, which lets us
compute the accuracy Aj (k) as the probability P(d < 0).
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4. Analysis of Class Scores

As explained earlier, our previous average-case analysis of naive Bayes was
computationally intractable because it used the binomial distribution to com-
pute the exact probability for every possible combination of counts for classes
and attributes. However, one of the key results in statistics states that, given
a reasonable number of samples, one can approximate a binomial distribu-

2 using a normal distribution with the same

tion with mean g and variance o
parameters. Another key idea is that a linear combination of normally dis-
tributed variables will also follow a normal distribution. And given a normally
distributed variable, one can convert its values into the standard normal dis-
tribution ®(x), which has a mean of zero and variance of one, and for which

one can easily compute the area for any interval.

We will take this latter approach to compute P(d < 0), assuming that
d follows a normal distribution by reasoning we will explain shortly. This
assumption lets us convert d’s values into the standard normal form ®(x) by
subtracting its mean and dividing by its variance, which gives

P(d“dgx) = d(x) .

2
04

If we let & be —puq/4/03, then we have

o4

Af (k) =P(d<0)= (__”d) :

which we can compute for different values of yy and o3 by approximating the
area under the standard normal distribution for a given number of positive
training cases k. For each negative test case, we have the same scores s and
5, but the expected accuracy on such instances equals the probability that
S > &; this gives us A; (k) = P(d>0)=1-P(d<0)=1- (—ud/\/;g ),
which we can again calculate from the standard normal distribution.

However, we have yet to characterize ugy and o3, the relevant terms for
positive test cases, using more primitive expressions. We can assume that the
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variable d follows a normal distribution if we can express it as the difference
of two other normally distributed variables, say the negative score S and the
positive score §. We can also rewrite its mean and variance using those for its
components, which gives pq = pu, — pg and oy = 0% + 03.

We can treat the scores S and S as normally distributed provided we as-
sume they are both sums of variables that are themselves normally distributed.
Recall that earlier we expressed the score S for each class as the sum of loga-
rithms for observed counts, storing only one count ¢ for each Boolean attribute
to reflect the number of times it has been present in instances of that class.
We can compute the other count, for the number of times it was absent, as
k — c¢. We can also decompose the score into different terms for irrelevant and
relevant attributes, giving

S=0—i—-r)loglk+2)+ ) _slog(cy+1) + Y iloglk —co+1) +
v=olog(cy, + 1)+ 37 log(k — ¢, +1),

where the first term represents influence from the count for the class, the
second from the counts for the j irrelevant attributes present in the test case,
the third from the counts for the : — j irrelevant attributes that are absent,
and the last two terms from the analogous counts for the s relevant attributes
that are present and the r — s ones that are absent. The added constants 1
and 2 comes from our earlier decisions about how to initialize various counts.

The counts for each attribute follow a binomial distribution, which means
we can approximate them with a normal distribution for large numbers of
training cases. However, the score uses not the counts themselves but rather
a logarithmic transformation of the counts, which clearly does not follow a
binomial. Nevertheless, since each attribute is independent, the central limit
theorem tells us that we can use a normal curve to approximate their distribu-
tion. Moreover, we can reexpress the mean and variance for this distribution
using the means and variances of the score §’s components, giving us

ps = (1 —i—r)log(k+2) +j - p+(i—7J) ps+s-po+(r—s) ps

and

of=j-oi+(i—j)-ol+s-0l+(r—s)-0l,
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where g, is the mean of the log counts for each irrelevant attribute present
in the test case, py is the mean for each irrelevant attribute absent from the
test case, u, and ps are the analogous terms for relevant attributes, and the
o terms specify the variances for the various situations.

We must still calculate the means and variances for the log counts of irrele-
vant and relevant attributes. We do not know any closed-form expressions for
these quantities, but we can compute them from their definitions for a given
number of positive training cases k. In particular, for any variable 2 we have
py = Y xP(x), and we know that the probability of each possible log value is
the same as the probability for its corresponding count. Thus, we have

k

k _

po =3 loglm + 1) (m)Pm*cwu PAJC
m=0 .

where P(A,|C) is the probability that an irrelevant attribute will appear in a

positive instance. The mean for irrelevant attributes not present in the test

case is

k

k

pz = > log(k —m+1) (m>P(A*C)’”[1 — P(AO)fF ™,
m=0 ’

since the two differ only in their contributions to the overall score and not in

their probabilities. The analogous expressions for relevant attributes, p, and

ps, are identical except that they replace P(A,|C) with P(A,|C).

Similar reasoning lets us determine the variances for the log counts. For

any variable x, we have 02 = [Y 22P(z)] — [u.)?

Again, since we know the
probability of each possible log value from the probability for its corresponding

count, we have

o2 = (3 toatm+ 172 ) Lafey i - PO ) -

m=0

as the variance for an irrelevant attribute that is present in a positive instance
and

o2 = (X togth—m+17 (1 P - PaIClF )

m=0
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as the variance for an irrelevant feature that is not present in a positive in-
stance. Again, the variances for relevant attributes, o, and o5, are the same
except that they replace P(A,|C) with P(A,|C).

For the negative class, we can decompose the mean pz and variance o2 in the
same manner. We will not give details here, but note only that the means and
variances for irrelevant and relevant attributes are identical, except that they

replace k with n — k, P(A,|C) with P(A,|C), and P(A,|C) with P(4,|C).

5. Analysis of Component Terms

Our remaining unknown terms include the conditional probability of an at-
tribute given a class and the probabilities of the classes themselves, P(C') and
P(C). Recall that we know the distribution of instances for the domain, which
is determined by the given probability P(A) that each attribute will occur in
an arbitrary instance. Since we assume these attributes are independent, we
know that the number of attributes present in an instance follows a binomial
distribution with probability of success P(A). However, we are concerned here
with ¢ of r concepts, so we care only about those instances with ¢ or more

relevant attributes present out of the r possible. Thus, we have

POI=Y <T>P(A)“[1 — PA)

i—g \U

as the probability of observing a positive instance, and since there exist only

two classes, we know that P(C) =1 — P(C).

Because the naive Bayesian classifier stores counts for each predictive at-
tribute, we must also calculate the probability P(A,|C) that a relevant at-
tribute will occur in an arbitrary positive instance. By reasoning we will not
detail here, one can show that

P(A, NC)

P(4:|C) = —pa— = P(lc)g (21)13(14)11[1 ~ PA)"

Similarly, we can specify the probability P(A,|C) that a relevant attribute will
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occur in an arbitrary negative instance using an analogous expression:

P(A,|C) =

u—1

P(AANC) 1 (r—1
RN |

u=1

)P(A)“u Py

which sums over all values that are less than ¢ and that conditionalizes over
the probability of a negative instance.

Finally, we must express the probabilities that an irrelevant attribute A,
will appear in an arbitrary positive and in a negative instance. However, the
definition of an irrelevant attribute is that its values are independent of the
class. This means that P(A,|C) = P(A,|C) = P(A,), so that we can use each
irrelevant attribute’s probability P(A) directly in our various calculations.

We can extend the framework to handle class noise by modifying the defini-
tions of three basic terms: P(C), P(A,|C), and P(A.|C). A common definition
of class noise involves the corruption of class names (i.e., replacing the actual
class with its opposite) with a certain probability 0 < z < 1. As Iba and
Langley (1992) have noted, the probability of the class after one has corrupted
values is

P(C) = (1 2)P(C) +2(1 — P(C)) = P(C)[1 — 2] + 2 ,

since there exists a P(C') probability that the class was actually present and a
1 — z probability it was not corrupted, as well as a 1 — P(C') probability that it
was not present and a z probability that corruption has made it seem present.

For an irrelevant attribute A,, the probability P(A,|C) is unaffected by
class noise and remains equal to P(A), since the attribute is still independent
of the class. However, the situation for relevant attributes is more complicated.
In particular, we must reexpress the (corrupted) conditional probability of a
relevant attribute A, given the (corrupted) class C' as

P'(A,ANC) (1 —2)P(A,AC)+ zP(A, ANC)

PO ="pey = P0)

where the terms in the numerator are the pre-noise conditional probabilities
and the denominator is the noisy class probability given above. We can use
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similar reasoning to express the post-noise probability of a relevant attribute
given the negative class C as
P'(A,ANC) (1 —2)P(A,ANC)+ 2zP(A, AC)

PAO="pe - PO ’

where P'(C') = 1 — P'(C'). We then replace the original terms for P(C),
P(A,|C), and P(A,|C) with their corrupted analogs in earlier parts of the
analysis to determine the effect of class noise on the naive Bayesian classifier.

6. Implications for Learning Behavior

The equations in the previous section provide a formal description of naive
Bayes’ behavior, but their implications are not obvious. However, we can use
the analysis to make average-case predictions about the algorithm’s accuracy
under different domain characteristics. Because the analysis introduces normal
approximations to the binomial and relies on the central limit theorem, the
predictions will not be perfect, but their accuracy should increase with the
number of training cases and attributes. And because the analysis is tractable
computationally, we can examine larger training and attribute sets than in our
previous average-case treatment of the naive Bayesian classifier.

In addition to theoretical predictions, we report learning curves that sum-
marize runs on 100 randomly generated training sets. Each curve reports the
average classification accuracy over these runs on a single noise-free test set
that includes all possible instances. In each case, we bound the mean accu-
racy with 95% confidence intervals to show the degree to which our predicted
learning curves fit the observed ones. These experimental results provide an
important check on both our reasoning and the ability of the analysis to predict
behavior despite its simplifying approximations.

Figure 1 (a) shows the effect of irrelevant attributes on naive Bayes’ rate

of learning when the training data contains no noise. In this study, we used

P(A) = % as the probability for each attribute and a ‘2 of 2’ target concept,

while we varied both the number of training cases and the number of irrele-
vant attributes. As typical with learning curves, the accuracies begin low and
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Figure 1. Theoretical and experimental learning curves for naive Bayes when (a) the domain
involves a ‘2 of 2’ target concept and varying numbers of irrelevant attributes, and (b) for a
domain with one irrelevant attribute and a conjunctive target concept with varying numbers
of relevant features. The error bars represent 95% confidence intervals for the experimental
curves.

gradually improve with the size of the training set. The effect of irrelevants
also agrees with our intuitions, in that it degrades the learning rate gracefully
and does not alter asymptotic accuracy, which is 100 percent on conjunctive
concepts (Domingos & Pazzani, 1997). Moreover, the predicted and observed
learning curves are in close agreement, even for very small training sets where
we expected divergence due to our use of approximations.

Figure 1 (b) presents the corresponding effect of relevant attributes on learn-
ing rate, again in the absence of noise. Here we used a single irrelevant at-
tribute in all conditions, but we varied the number of training cases and the
number of relevant features in a conjunctive target concept. As before, we
used P(A) = 1 for each attribute, which causes class distributions to become
ever more skewed as one adds relevant features. Intuition suggests that this
should make more complex concepts more difficult to master and, indeed, the
‘1 of 17 concept has the highest learning rate. But the analysis also predicts
that, over most of their learning curves, accuracy will be higher for a conjunc-
tion of five attributes than for one with three attributes. The empirical results
confirm this surprising phenomenon, matching the predictions closely enough
to reflect a crossover between curves around the fifth training instance.
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Figure 2. Theoretical and experimental learning curves for naive Bayes when the domain
involves one irrelevant attribute and (a) a g of r target concept with different values for g,
as well as (b) a ‘3 of 3’ concept with varying levels of class noise.

Another interesting question concerns the effect of ¢, the number of neces-
sary attributes in a ¢ of r concept, which we could not address in our earlier
study because it was limited to conjunctive concepts. Figure 2 (a) shows the
learning curves for target concepts with five relevant attributes when ¢ = 3,
g =4, and ¢ = 5. Intuition suggests that concepts with the highest and lowest
g values should be easiest to learn, since relevant features will be easier to
identify when they are more nearly criterial. The analysis predicts this effect
over most of the learning curves, and again the experimental curves match the
analytic ones quite well. We have not shown curves for ¢ = 1 and ¢ = 2, since
they are identical to those for ¢ = 5 and ¢ = 4, respectively.

The presence of noise is another complicating factor that makes induction
difficult. Figure 2 (b) illustrates the effect of class noise on the learning rate
for naive Bayes, given a ‘3 of 3’ target concept and one irrelevant feature. To
support more direct correspondence among different noise levels, we omitted
noise from the test set, which normalizes accuracies and eases comparison.
Both the theoretical and experimental curves match the intuition that learning
rate should slow with class noise, but here the predictions do not match the
observations quite as well as before, showing there can be a cost to introducing
approximations for the sake of efficiency.
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7. Concluding Remarks

In this paper, we have presented an improved average-case analysis of the
naive Bayesian classifier, an induction algorithm that has become increasingly
popular in recent years. The treatment generalized our earlier analysis by
extending it to arbitrary ‘M of N’ concepts. More important, the new analysis
was much more tractable, in computational terms, than its predecessor, which
let us make predictions about naive Bayes’ behavior on larger training sets
and more attributes. The price of this computational efficiency was reliance
on normal approximations to the binomial, which meant that our ability to fit
empirical results became an empirical question.

To explore the implications of the analysis, we plotted the predicted be-
havior of the algorithm as a function of the number of training instances, the
amount of noise, and the number of irrelevant, relevant, and necessary at-
tributes, finding graceful degradation as these parameters varied. As a check
on our analysis, we ran the algorithm on synthetic training and test sets with
the same characteristics. In general, we found excellent fits between the the-
oretical predictions and observed behavior, which lends support to our use of
approximations to make the analysis tractable.

One issue we have not addressed is the sensitivity of our analysis to its
underlying assumptions. We know that naive Bayes often behaves well even
when the predictive attributes are not completely independent given the class
(Domingos & Pazzani, 1997), but this does not mean that the analysis will
accurately predict its learning curve under such conditions. In future work, we
should run experiments with domains that violate the independence assump-
tion to varying degrees, as Pazzani and Sarrett (1992) did in their analysis
of conjunctive learning. They reported good fits to observed learning curves
despite dependencies, and we anticipate similar results for naive Bayes. We
also hope to extend our new analytic techniques to other induction algorithms,
including nearest neighbor and methods that learn determinations.

A final direction for future research involves using average-case analysis to
better understand the behavior of naive Bayes and other algorithms in natural
domains. For any natural data set, we can estimate P(C'), P(A), and P(A|C),
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and we know the number of training cases and attributes. We do not know
the number of relevant attributes, the noise level, or the exact target concept,
but experimental learning curves provide constraints that we can use to select
among alternative settings for parameters from the average-case model. This
would require extending the analysis to handle non-Boolean attributes and
a broader range of target concepts, but the result would be a much stronger
connection between the theoretical and empirical branches of machine learning,
bringing the field closer to becoming a true science of the artificial.
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