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1. Introduction and MotivationMost theoretical analyses of machine learning focus on worst-case results, in-cluding those in the `probably approximately correct' framework (Haussler,1990). Although this lets analysts obtain quite general, distribution-free re-sults, it also means their predictions of learning rate are much slower thanthose observed in practice. As a result, the link between theory and experi-ment in machine learning has become tenuous.An alternative approach involves the average-case analysis of speci�c induc-tion algorithms on domains with known characteristics. Pazzani and Sarrett(1992) report early results of this sort for a conjunctive learning method, andsimilar studies have been done for decision stumps (Iba & Langley, 1992), thenaive Bayesian classi�er (Langley, Iba, & Thompson, 1992), 1-nearest neighbor(Langley & Iba, 1992), and k-nearest neighbor (Okamoto & Nobuhiro, 1997).Each analysis produced predictions about the e�ect of domain characteristics,averaged over di�erent training sets, that �t experimental data very closely.However, this theoretical accuracy came with a price. For even simple meth-ods like naive Bayes and nearest neighbor, the calculations needed to predictbehavior could take drastically longer than actually running experiments withsynthetic data, even when the latter averaged over many training sets. Thedi�culty resulted from the analyses' reliance on the exact calculation of prob-abilities for all possible combinations of events. For many induction methods,the number of such events grows exponentially with the number of attributesand size of the training set. This meant that theoretical predictions were onlypossible for small domains and early parts of the learning curve.In this paper, we present a more tractable approach to the average-caseanalysis of induction algorithms. We demonstrate the framework with a newtreatment of the naive Bayesian classi�er, both because of the growing interestwith this simple yet powerful method (e.g., Domingos & Pazzani, 1997) andbecause our earlier analysis was especially problematic in computational terms.The new analysis uses many of the same techniques as the previous one, butit introduces approximations based on the normal distribution that let uscalculate means and variances for the sums and di�erences of quantities, rather
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than about the probabilities of their explicit combinations.1 The result is atractable average-case analysis of naive Bayes that, as experimental studiesreveal, remains accurate despite its use of approximations.2. Review of the Naive Bayesian Classi�erAlthough it has a long history in pattern recognition (Duda & Hart, 1973),the naive Bayesian classi�er �rst appeared in the machine learning literatureas a straw man against which to compare more sophisticated methods (e.g.,Cestnik, Konenenko, & Bratko, 1987). Only gradually did researchers becomeaware of its potential, but now it is widely recognized as a viable and robustapproach to supervised induction.Before beginning the analysis, we should �rst review the manner in whichnaive Bayes operates. To classify a new instance I, which is simply a conjunc-tion of attribute values, the method calculates the probability of each classgiven the instance usingP (CijI) = P (Ci)P (IjCi)P (I) = P (Ci)Qatts P (vjjCi)Pclasses P (Ck)Qatts P (vjjCk) ;where P (Ci) is the probability of class Ci and P (vjjCi) is the conditional prob-ability for each attribute value vj given the class Ci. The product of conditionalprobabilities comes from the assumption that attributes are independent giventhe class, which greatly simpli�es the computation of the class scores and easesthe induction process. After calculating P (CijI) for each class, the algorithmassigns the instance to the class with the highest overall score or probability.Although the above formulation of naive Bayes is the traditional one, wecan express the score for each class in another form that is more tractablefor analytical purposes. The basic idea is that, if we are concerned only withpredictive accuracy, we can invoke any monotonic transformation that does nota�ect the ordering on class scores. One such transformation involves removing1. Golea and Marchand (1993) report an average-case analysis of perceptron learning thatalso incorporates normal approximations, but their work includes other ideas from sta-tistical mechanics that make it inaccessible to the machine learning community.
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the denominator, which is the same for each class, and another involves takingthe logarithm of the numerator. Together, these produce a new scoreSC = logP (C) +Xatts logP (vjjC) :In fact, this form is often used in practice, since it is e�cient to calculateand reduces round-o� errors due to small fractions. The new score SC is nolonger a probability, but is quite su�cient if one only wants to predict themost probable class.We should also discuss the estimation of probabilities in this expression.The typical implementation of naive Bayes stores an overall count n, one countkC for each class, and one count cj for each attribute value given the class.During training, the induction algorithm increments the overall count on eachtraining instance, increments the class count for each example of that class,and increments the class-speci�c count for each attribute value that appears inthe instance. During performance, the classi�er uses these counts to estimateprobabilities, giving SC = log  kCn !+Xatts log � cjkC � :However, if the algorithm has not encountered a particular class or an attributevalue for some class during learning, a slight problem arises because a count iszero. A common response is to initialize counts to 1 for each value, which wewill also assume in our analysis. Moreover, since we assume Boolean attributes,we will set the initial count for each class to 2, and since we assume two classes,we will use 4 as the initial total count. This results in prior probabilities of 12for both classes and for each value given a class.These decisions about how to initialize counts require a slight revision ofthe score for each class. Moreover, our assumption that attributes are Booleanlets us store only one count cj for each attribute, for when it is present in aninstance (i.e., has value true). When the attribute is absent from an instance(i.e., has value false), we can simply use kC � cj as the count. We can re
ectthis in the score by separating the contribution for features that are present
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and absent, givingSC = log  kC + 2n+ 4 !+Xatts log � cj + 1kC + 2�+Xatts log  kC � cj + 1kC + 2 ! :We can also remove the denominator n + 4 in the �rst term, since this is thesame for both classes. We will use this modi�ed form of the class score in ouraverage-case analysis of naive Bayes.3. Analysis of Classi�cation AccuracyWe will assume that the target concept C is a monotone function of r rele-vant Boolean attributes that returns true if q or more of these r attributesare present and returns false otherwise. Thus, for a `3 of 5' concept, anyinstance that has three, four, or �ve features present is a positive example ofthe concept. We further suppose that there are i irrelevant Boolean attributesthat play no role in the target concept, giving r + i total Boolean features,each of which occurs with probability P (A). We also assume that attributesare independent of each other. For now, we also assume that both trainingand test data are noise free, though we will return to this issue later.Given this information, we want to predict the probabilityA(n) of classifyinga test case correctly after naive Bayes has seen n training instances. We canpartition this accuracy measure into two components, one dealing with positivetest cases and the other with negative test cases. Both terms involve summingover di�erent types of test cases that di�er in the number j out of i irrelevantattributes that are present and in the number s out of r relevant attributesthat are present. This gives usA(n) = iXj=0 rXs=q Tj;sA+j;s(n) + iXj=0 q�1Xs=0Tj;sA�j;s(n) ;where Tj;s is the probability of encountering a test case with exactly j outof i irrelevant attributes and exactly s out of r relevant attributes, A+j;s(n)is the probability of correctly classifying such a test case, and A�j;s(n) is theanalogous term for a negative case.
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Let us �rst consider the probability of encountering a given type of testcase. Because each attribute occurs independently with probability P (A), thenumber of irrelevant attributes j that appear in a test case follows a binomialdistribution with probability of success P (A), as does the number of relevantattributes s that it contains. Taken together, this givesTj;s =  ij!P (A)j[1� P (A)]i�j rs!P (A)s[1� P (A)]r�s :Intuitively, this holds because the two probabilities are independent, with theformer occurring in �ij� di�erent ways and the latter occurring in �rs� ways.Now we can focus on the predictive accuracy A+j;s(n) for a positive testcase in which j irrelevants and s relevants are present. For this, we mustaverage over the various concept descriptions that naive Bayes will acquirefrom di�erent training sets. We can decompose the accuracies after n trainingcases into weighted sums of accuracies A+j;s(k) and A�j;s(k) for di�erent numbersof positive instances, givingA+j;s(n) = nXk=0P (c+ = k)A+j;s(k) and A�j;s(n) = nXk=0P (c+ = k)A�j;s(k) ;where P (c+ = k) is the probability that exactly k out of n training instancesare positive. Since each training case is independent of the others, the numberk follows a binomial distribution, so that we haveP (c+ = k) =  nk!P (C)k[1� P (C)]n�k ;where P (C) is the probability that any given instance will be positive.Let us turn to the accuracy on a positive test cast with j irrelevant attributesand s relevant attributes present, given that naive Bayes has observed k out ofn positive training cases. Recall that for each test case, the Bayesian classi�erproduces a score for the positive class, which we will call S, and a score forthe negative class, which we will call �S. For a positive test case, the expectedaccuracy is precisely the probability that S > �S. We can restate this relationby de�ning the di�erence between these two scores d = �S � S, which lets uscompute the accuracy A+j;s(k) as the probability P (d � 0).



Average-Case Analysis of Naive Bayes Page 6
4. Analysis of Class ScoresAs explained earlier, our previous average-case analysis of naive Bayes wascomputationally intractable because it used the binomial distribution to com-pute the exact probability for every possible combination of counts for classesand attributes. However, one of the key results in statistics states that, givena reasonable number of samples, one can approximate a binomial distribu-tion with mean � and variance �2 using a normal distribution with the sameparameters. Another key idea is that a linear combination of normally dis-tributed variables will also follow a normal distribution. And given a normallydistributed variable, one can convert its values into the standard normal dis-tribution �(x), which has a mean of zero and variance of one, and for whichone can easily compute the area for any interval.We will take this latter approach to compute P (d � 0), assuming thatd follows a normal distribution by reasoning we will explain shortly. Thisassumption lets us convert d's values into the standard normal form �(x) bysubtracting its mean and dividing by its variance, which givesP 0@d� �dq�2d � x1A = �(x) :If we let x be ��d=q�2d, then we haveA+j;s(k) = P (d � 0) = �0@��dq�2d1A ;which we can compute for di�erent values of �d and �2d by approximating thearea under the standard normal distribution for a given number of positivetraining cases k. For each negative test case, we have the same scores s and�s, but the expected accuracy on such instances equals the probability that�S > S; this gives us A�j;s(k) = P (d > 0) = 1�P (d � 0) = 1�� ���d=q�2d �,which we can again calculate from the standard normal distribution.However, we have yet to characterize �d and �2d, the relevant terms forpositive test cases, using more primitive expressions. We can assume that the
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variable d follows a normal distribution if we can express it as the di�erenceof two other normally distributed variables, say the negative score �S and thepositive score S. We can also rewrite its mean and variance using those for itscomponents, which gives �d = � �S � �S and �2d = �2�S + �2S .We can treat the scores S and �S as normally distributed provided we as-sume they are both sums of variables that are themselves normally distributed.Recall that earlier we expressed the score S for each class as the sum of loga-rithms for observed counts, storing only one count c for each Boolean attributeto re
ect the number of times it has been present in instances of that class.We can compute the other count, for the number of times it was absent, ask� c. We can also decompose the score into di�erent terms for irrelevant andrelevant attributes, givingS = (1� i� r)log(k + 2) + Pjw=0 log(cw + 1) +Pix=j+1 log(k � cx + 1) +Psy=0 log(cy + 1) +Prz=s+1 log(k � cz + 1) ;where the �rst term represents in
uence from the count for the class, thesecond from the counts for the j irrelevant attributes present in the test case,the third from the counts for the i � j irrelevant attributes that are absent,and the last two terms from the analogous counts for the s relevant attributesthat are present and the r � s ones that are absent. The added constants 1and 2 comes from our earlier decisions about how to initialize various counts.The counts for each attribute follow a binomial distribution, which meanswe can approximate them with a normal distribution for large numbers oftraining cases. However, the score uses not the counts themselves but rathera logarithmic transformation of the counts, which clearly does not follow abinomial. Nevertheless, since each attribute is independent, the central limittheorem tells us that we can use a normal curve to approximate their distribu-tion. Moreover, we can reexpress the mean and variance for this distributionusing the means and variances of the score S's components, giving us�S = (1� i� r)log(k + 2) + j � �? + (i� j) � ��? + s � �� + (r � s) � ���and �2S = j � �2? + (i� j) � �2�? + s � �2� + (r � s) � �2�� ;
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where �? is the mean of the log counts for each irrelevant attribute presentin the test case, ��? is the mean for each irrelevant attribute absent from thetest case, �� and ��� are the analogous terms for relevant attributes, and the� terms specify the variances for the various situations.We must still calculate the means and variances for the log counts of irrele-vant and relevant attributes. We do not know any closed-form expressions forthese quantities, but we can compute them from their de�nitions for a givennumber of positive training cases k. In particular, for any variable x we have�x = PxP (x), and we know that the probability of each possible log value isthe same as the probability for its corresponding count. Thus, we have�? = kXm=0 log(m+ 1) km!P (A?jC)m[1� P (A?jC)]k�m ;where P (A?jC) is the probability that an irrelevant attribute will appear in apositive instance. The mean for irrelevant attributes not present in the testcase is ��? = kXm=0 log(k �m+ 1) km!P (A?jC)m[1� P (A?jC)]k�m ;since the two di�er only in their contributions to the overall score and not intheir probabilities. The analogous expressions for relevant attributes, �� and���, are identical except that they replace P (A?jC) with P (A�jC).Similar reasoning lets us determine the variances for the log counts. Forany variable x, we have �2x = [P x2P (x)] � [�x]2. Again, since we know theprobability of each possible log value from the probability for its correspondingcount, we have�2? =  kXm=0 log(m+ 1)2 km!P (A?jC)m[1� P (A?jC)]k�m!� �2?as the variance for an irrelevant attribute that is present in a positive instanceand �2�? =  kXm=0 log(k �m+ 1)2 km!P (A?jC)m[1� P (A?jC)]k�m!� �2�?
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as the variance for an irrelevant feature that is not present in a positive in-stance. Again, the variances for relevant attributes, �� and ���, are the sameexcept that they replace P (A?jC) with P (A�jC).For the negative class, we can decompose the mean ��s and variance �2�s in thesame manner. We will not give details here, but note only that the means andvariances for irrelevant and relevant attributes are identical, except that theyreplace k with n� k, P (A?jC) with P (A?j �C), and P (A�jC) with P (A�j �C).5. Analysis of Component TermsOur remaining unknown terms include the conditional probability of an at-tribute given a class and the probabilities of the classes themselves, P (C) andP ( �C). Recall that we know the distribution of instances for the domain, whichis determined by the given probability P (A) that each attribute will occur inan arbitrary instance. Since we assume these attributes are independent, weknow that the number of attributes present in an instance follows a binomialdistribution with probability of success P (A). However, we are concerned herewith q of r concepts, so we care only about those instances with q or morerelevant attributes present out of the r possible. Thus, we haveP (C) = rXu=q ru!P (A)u[1� P (A)]r�uas the probability of observing a positive instance, and since there exist onlytwo classes, we know that P ( �C) = 1� P (C).Because the naive Bayesian classi�er stores counts for each predictive at-tribute, we must also calculate the probability P (A�jC) that a relevant at-tribute will occur in an arbitrary positive instance. By reasoning we will notdetail here, one can show thatP (A�jC) = P (A� ^ C)P (C) = 1P (C) rXu=q r � 1u� 1!P (A)u[1� P (A)]r�u :Similarly, we can specify the probability P (A�j �C) that a relevant attribute will
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occur in an arbitrary negative instance using an analogous expression:P (A�j �C) = P (A� ^ �C)P ( �C) = 1P ( �C) q�1Xu=1 r � 1u� 1!P (A)u[1� P (A)]r�u ;which sums over all values that are less than q and that conditionalizes overthe probability of a negative instance.Finally, we must express the probabilities that an irrelevant attribute A?will appear in an arbitrary positive and in a negative instance. However, thede�nition of an irrelevant attribute is that its values are independent of theclass. This means that P (A?jC) = P (A?j �C) = P (A?), so that we can use eachirrelevant attribute's probability P (A) directly in our various calculations.We can extend the framework to handle class noise by modifying the de�ni-tions of three basic terms: P (C), P (A�jC), and P (A�j �C). A common de�nitionof class noise involves the corruption of class names (i.e., replacing the actualclass with its opposite) with a certain probability 0 � z � 1. As Iba andLangley (1992) have noted, the probability of the class after one has corruptedvalues is P 0(C) = (1� z)P (C) + z(1� P (C)) = P (C)[1� 2z] + z ;since there exists a P (C) probability that the class was actually present and a1�z probability it was not corrupted, as well as a 1�P (C) probability that itwas not present and a z probability that corruption has made it seem present.For an irrelevant attribute A?, the probability P (A?jC) is una�ected byclass noise and remains equal to P (A), since the attribute is still independentof the class. However, the situation for relevant attributes is more complicated.In particular, we must reexpress the (corrupted) conditional probability of arelevant attribute A� given the (corrupted) class C asP 0(A�jC) = P 0(A� ^ C)P 0(C) = (1� z)P (A� ^ C) + zP (A� ^ �C)P 0(C) :where the terms in the numerator are the pre-noise conditional probabilitiesand the denominator is the noisy class probability given above. We can use
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similar reasoning to express the post-noise probability of a relevant attributegiven the negative class �C asP 0(A�jC) = P 0(A� ^ �C)P 0( �C) = (1� z)P (A� ^ �C) + zP (A� ^ C)P 0( �C) ;where P 0( �C) = 1 � P 0(C). We then replace the original terms for P (C),P (A�jC), and P (A�j �C) with their corrupted analogs in earlier parts of theanalysis to determine the e�ect of class noise on the naive Bayesian classi�er.6. Implications for Learning BehaviorThe equations in the previous section provide a formal description of naiveBayes' behavior, but their implications are not obvious. However, we can usethe analysis to make average-case predictions about the algorithm's accuracyunder di�erent domain characteristics. Because the analysis introduces normalapproximations to the binomial and relies on the central limit theorem, thepredictions will not be perfect, but their accuracy should increase with thenumber of training cases and attributes. And because the analysis is tractablecomputationally, we can examine larger training and attribute sets than in ourprevious average-case treatment of the naive Bayesian classi�er.In addition to theoretical predictions, we report learning curves that sum-marize runs on 100 randomly generated training sets. Each curve reports theaverage classi�cation accuracy over these runs on a single noise-free test setthat includes all possible instances. In each case, we bound the mean accu-racy with 95% con�dence intervals to show the degree to which our predictedlearning curves �t the observed ones. These experimental results provide animportant check on both our reasoning and the ability of the analysis to predictbehavior despite its simplifying approximations.Figure 1 (a) shows the e�ect of irrelevant attributes on naive Bayes' rateof learning when the training data contains no noise. In this study, we usedP (A) = 12 as the probability for each attribute and a `2 of 2' target concept,while we varied both the number of training cases and the number of irrele-vant attributes. As typical with learning curves, the accuracies begin low and
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Figure 1. Theoretical and experimental learning curves for naive Bayes when (a) the domaininvolves a `2 of 2' target concept and varying numbers of irrelevant attributes, and (b) for adomain with one irrelevant attribute and a conjunctive target concept with varying numbersof relevant features. The error bars represent 95% con�dence intervals for the experimentalcurves.gradually improve with the size of the training set. The e�ect of irrelevantsalso agrees with our intuitions, in that it degrades the learning rate gracefullyand does not alter asymptotic accuracy, which is 100 percent on conjunctiveconcepts (Domingos & Pazzani, 1997). Moreover, the predicted and observedlearning curves are in close agreement, even for very small training sets wherewe expected divergence due to our use of approximations.Figure 1 (b) presents the corresponding e�ect of relevant attributes on learn-ing rate, again in the absence of noise. Here we used a single irrelevant at-tribute in all conditions, but we varied the number of training cases and thenumber of relevant features in a conjunctive target concept. As before, weused P (A) = 12 for each attribute, which causes class distributions to becomeever more skewed as one adds relevant features. Intuition suggests that thisshould make more complex concepts more di�cult to master and, indeed, the`1 of 1' concept has the highest learning rate. But the analysis also predictsthat, over most of their learning curves, accuracy will be higher for a conjunc-tion of �ve attributes than for one with three attributes. The empirical resultscon�rm this surprising phenomenon, matching the predictions closely enoughto re
ect a crossover between curves around the �fth training instance.
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Figure 2. Theoretical and experimental learning curves for naive Bayes when the domaininvolves one irrelevant attribute and (a) a q of r target concept with di�erent values for q,as well as (b) a `3 of 3' concept with varying levels of class noise.Another interesting question concerns the e�ect of q, the number of neces-sary attributes in a q of r concept, which we could not address in our earlierstudy because it was limited to conjunctive concepts. Figure 2 (a) shows thelearning curves for target concepts with �ve relevant attributes when q = 3,q = 4, and q = 5. Intuition suggests that concepts with the highest and lowestq values should be easiest to learn, since relevant features will be easier toidentify when they are more nearly criterial. The analysis predicts this e�ectover most of the learning curves, and again the experimental curves match theanalytic ones quite well. We have not shown curves for q = 1 and q = 2, sincethey are identical to those for q = 5 and q = 4, respectively.The presence of noise is another complicating factor that makes inductiondi�cult. Figure 2 (b) illustrates the e�ect of class noise on the learning ratefor naive Bayes, given a `3 of 3' target concept and one irrelevant feature. Tosupport more direct correspondence among di�erent noise levels, we omittednoise from the test set, which normalizes accuracies and eases comparison.Both the theoretical and experimental curves match the intuition that learningrate should slow with class noise, but here the predictions do not match theobservations quite as well as before, showing there can be a cost to introducingapproximations for the sake of e�ciency.
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7. Concluding RemarksIn this paper, we have presented an improved average-case analysis of thenaive Bayesian classi�er, an induction algorithm that has become increasinglypopular in recent years. The treatment generalized our earlier analysis byextending it to arbitrary `M of N' concepts. More important, the new analysiswas much more tractable, in computational terms, than its predecessor, whichlet us make predictions about naive Bayes' behavior on larger training setsand more attributes. The price of this computational e�ciency was relianceon normal approximations to the binomial, which meant that our ability to �tempirical results became an empirical question.To explore the implications of the analysis, we plotted the predicted be-havior of the algorithm as a function of the number of training instances, theamount of noise, and the number of irrelevant, relevant, and necessary at-tributes, �nding graceful degradation as these parameters varied. As a checkon our analysis, we ran the algorithm on synthetic training and test sets withthe same characteristics. In general, we found excellent �ts between the the-oretical predictions and observed behavior, which lends support to our use ofapproximations to make the analysis tractable.One issue we have not addressed is the sensitivity of our analysis to itsunderlying assumptions. We know that naive Bayes often behaves well evenwhen the predictive attributes are not completely independent given the class(Domingos & Pazzani, 1997), but this does not mean that the analysis willaccurately predict its learning curve under such conditions. In future work, weshould run experiments with domains that violate the independence assump-tion to varying degrees, as Pazzani and Sarrett (1992) did in their analysisof conjunctive learning. They reported good �ts to observed learning curvesdespite dependencies, and we anticipate similar results for naive Bayes. Wealso hope to extend our new analytic techniques to other induction algorithms,including nearest neighbor and methods that learn determinations.A �nal direction for future research involves using average-case analysis tobetter understand the behavior of naive Bayes and other algorithms in naturaldomains. For any natural data set, we can estimate P (C), P (A), and P (AjC),
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and we know the number of training cases and attributes. We do not knowthe number of relevant attributes, the noise level, or the exact target concept,but experimental learning curves provide constraints that we can use to selectamong alternative settings for parameters from the average-case model. Thiswould require extending the analysis to handle non-Boolean attributes anda broader range of target concepts, but the result would be a much strongerconnection between the theoretical and empirical branches of machine learning,bringing the �eld closer to becoming a true science of the arti�cial.ReferencesCestnik, G., Konenenko, I, & Bratko, I. (1987). Assistant-86: A knowledge-elicitation tool for sophisticated users. In I. Bratko & N. Lavrac (Eds.) Progressin machine learning. Sigma Press.Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning ,3 , 261{284.Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesianclassi�er under zero-one loss. Machine Learning , 29 ,103{130.Golea, M., & Marchand, M. (1993). On learning perceptrons with binary weights.Neural Computation, 5 , 767{782.Haussler, D. (1990). Probably approximately correct learning. Proceedings of theEighth National Conference on Arti�cial Intelligence (pp. 1101{1108). Boston.Iba, W., & Langley, P. (1992). Induction of one-level decision trees. Proceedingsof the Ninth International Conference on Machine Learning (pp. 233{240). Ab-erdeen, Scotland: Morgan Kaufmann.Langley, P., & Iba, W. (1993). Average-case analysis of a nearest neighbor algo-rithm. Proceedings of the Thirteenth International Joint Conference on Arti�cialIntelligence (pp. 889{894). Chambery, France.Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classi�ers.Proceedings of the Tenth National Conference on Arti�cial Intelligence (pp. 223{228). San Jose, CA: AAAI Press.Okamoto, S., & Yugami, N. (1997). An average-case analysis of the k-nearest neigh-bor classi�er for noisy domains. Proceedings of the Fifteenth International JointConference on Arti�cial Intelligence (pp. 238{243). Yokohama, Japan.Pazzani, M., & Sarrett, W. (1992). A framework for average-case analysis of con-junctive learning algorithms. Machine Learning , 9 , 349-372.


